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Abstract

The advent of 6G wireless networks introduces unprecedented challenges in delivering ultra-
high throughput, ultra-reliable low-latency communication (URLLC), and massive
connectivity, particularly in millimeter-wave (mmWave) and terahertz (THz) frequency
bands. Traditional RF engineering approaches, while foundational, face limitations in
adapting quickly to the dynamic and complex wireless environments inherent to 6G. This
paper presents a novel integration of advanced machine learning techniques focusing on
reinforcement learning and multimodal deep neural networks with cutting-edge RF
beamforming and resource allocation strategies. Leveraging real-world and high-fidelity
synthetic datasets, including DeepMIMO channel models and ns-3-based network
simulations, we develop and evaluate an Al-driven adaptive beamforming framework that
dynamically optimizes antenna array configurations and spectrum resources in response to
environmental variability. Experimental results demonstrate significant improvements in
throughput, latency reduction, and energy efficiency compared to baseline heuristics,
achieving up to 30% enhancement in communication reliability under realistic channel
conditions. This work not only bridges the gap between theoretical Al methodologies and
practical RF systems but also offers a scalable, interpretable solution poised to accelerate the
deployment of intelligent 6G networks. The findings provide a roadmap for future research in
Al-native wireless communications and establish a foundation for ultra-reliable, intelligent

resource management for next-generation connectivity.
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1. Introduction

The transition from 5G to 6G reflects a shift from gigabit connectivity to the pursuit of
terabit-per-second data rates, sub-millisecond latency, and near-perfect reliability. The
International Telecommunication Union (ITU) and IEEE outline 6G as a paradigm that
integrates ultra-reliable low-latency communication (URLLC), massive connectivity, and
advanced sensing into a single intelligent framework (Letaief et al., 2019; You et al., 2021;
Alsabah et al., 2021). Unlike 5G, which primarily balanced enhanced mobile broadband
(eMBB) and URLLC, 6G must deliver unprecedented levels of service quality for mission-
critical and immersive applications such as holographic telepresence, digital twins, and
industrial automation (Popovski et al., 2019; Khan et al., 2022).

Meeting these ambitious goals requires exploiting millimeter-wave (mmWave) and terahertz
(THz) bands, where wide bandwidths enable higher capacity. Yet these bands face severe
propagation challenges, including high path loss, beam misalignment, blockage, and rapid
channel fading (Alsharif et al., 2020; Haque et al., 2024). Conventional communication
strategies that rely on static beam management or deterministic resource allocation struggle to
cope with these impairments under dynamic conditions.

Artificial intelligence (Al), and in particular reinforcement learning (RL), offers new
opportunities to handle such complexity. RL agents can continuously adapt beam directions,
power levels, and resource blocks by learning from the environment, thereby improving
robustness in non-stationary radio frequency (RF) conditions (Lavdas et al., 2023; Gaydos et
al., 2022). Al-driven adaptive beamforming and resource management therefore provide a
pathway to enhance URLLC performance while maintaining spectral efficiency (Bairagi et
al., 2021; Xie et al., 2023).

Despite progress, existing AI/ML solutions often remain limited by simplified models,
unrealistic assumptions, or poor scalability in large multi-user environments (Barua et al.,
2023; Yan et al., 2023). Many works address beamforming or resource allocation in isolation,
without jointly modeling real RF impairments, multimodal signal interactions, and end-to-end
system constraints. This creates a gap between algorithmic potential and practical 6G
deployment.

This study addresses that gap by proposing a multimodal machine learning framework for
adaptive beamforming and intelligent resource management in 6G networks. Our
contributions are fourfold. First, we integrate multimodal data sources channel stat
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information, sensor metadata, and contextual features to enable robust decision-making.
Second, we implement a reinforcement learning model for adaptive beam control under
mmWave/THz fading. Third, we design an experimental testbed that evaluates our method in
realistic dynamic environments. Finally, results demonstrate significant improvements in
reliability, latency, and throughput compared to baseline schemes. These findings highlight
the potential of Al-driven RF optimization as a foundation for 6G wireless systems (Alsabah
et al., 2021; Baltrusaitis et al., 2019; Barua et al., 2023).

2. Background and Related Works
2.1 Beamforming in 5G and 6G Networks

Beamforming is a cornerstone of modern wireless communication, serving as the backbone
of 5G deployments and a defining feature of 6G visions. In 5G, massive multiple-input
multiple-output (MIMO) and hybrid beamforming architectures enable higher spectral
efficiency by directing energy into narrow beams, thereby improving coverage and
throughput (Lavdas et al., 2023). Yet, as systems scale toward higher frequencies, several
hardware and channel-related barriers emerge. At millimeter-wave (mmWave) and terahertz
(THz) bands, large bandwidths allow data rates approaching terabits per second, but severe
free-space path loss, susceptibility to blockage, beam misalignment, and Doppler shifts limit
reliability (Alsharif et al., 2020; Haque et al., 2024). Furthermore, RF front-end design
becomes increasingly complex, as phase noise, power amplifier efficiency, and antenna array
calibration directly affect performance (You et al., 2021).

Adaptive beamforming algorithms have evolved in response to these challenges. Early
solutions such as robust Capon beamformers (Cox et al., 1987) emphasized resilience against
steering vector mismatch, while more recent techniques leverage tensor decomposition or
rank-constrained optimizations to improve lateral resolution and adaptability (Beuret &
Thiran, 2024). Deep learning-based beamformers, trained on synthetic channel state
information (CSI), demonstrate significant improvements in beam tracking accuracy and
interference suppression (Lavdas et al., 2023). Yet scalability, energy efficiency, and
robustness under real-time mobility remain open problems, especially as 6G networks extend
to highly dynamic vehicular, aerial, and industrial IoT scenarios.

2.2 AI and ML Approaches in RF Optimization

The integration of artificial intelligence into RF optimization marks a paradigm shift from
deterministic to data-driven strategies. Reinforcement learning (RL) frameworks have gained
traction for adaptive power control, scheduling, and beam management in non-stationary
wireless environments. RL agents optimize long-term rewards by continuously interactin
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with the RF environment, enabling fast adaptation to user mobility, varying interference, and
multi-service coexistence (Gaydos et al., 2022; Lavdas et al., 2023). Beyond RL, federated
learning introduces distributed model training across edge devices, reducing communication
overhead and preserving privacy while supporting URLLC in vehicular and industrial
systems (Samarakoon et al., 2020). Digital twin-based approaches extend this concept by
simulating real-time edge-assisted decisions in UAV-aided 6G networks, showing potential
for ultra-reliable communication under extreme latency requirements (L1 et al., 2022).

While these methods highlight the feasibility of Al-driven optimization, they are constrained
by the type and quality of input data. Most existing works depend exclusively on CSI,
neglecting contextual information such as user mobility traces, environmental sensing, or
service-specific requirements. Multimodal machine learning (MML) provides an avenue to
overcome this by integrating heterogeneous data sources. Surveys in MML emphasize its
ability to fuse multiple modalities visual, textual, and signal-based to improve generalization
and robustness in complex decision-making tasks (Baltrusaitis et al., 2019; Barua et al.,
2023). Applying MML to 6G would allow joint exploitation of CSI, sensor metadata, and
contextual features, enabling adaptive algorithms to outperform unimodal approaches in real
RF conditions.

2.3 Limitations of Prior Work

Despite progress, critical gaps remain. First, reliance on synthetic or simplified channel
models undermines the robustness of many Al-based solutions, as real-world RF impairments
such as non-linear distortion, phase noise, and correlated fading are often ignored (Alsabah et
al., 2021). Second, most prior studies focus on single-objective optimization, targeting either
latency, throughput, or energy efficiency, without addressing the inherent trade-offs of multi-
service environments where eMBB and URLLC must coexist (Bairagi et al., 2021; Xie et al.,
2023). Third, the absence of multimodal data fusion leaves AI models vulnerable to
overfitting and weak adaptation under sudden channel variations. Integrating multimodal
signals could significantly enhance adaptability and scalability, yet research in this area
remains limited (Barua et al., 2023; Yan et al., 2023).

2.4 Comparative Analysis of Existing Research

The table below summarizes representative contributions, emphasizing their strengths and
limitations relative to the requirements of 6G adaptive beamforming and resource
management.
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Study Approach Strengths Limitations
Lavdas et al. Deep learning for Improved spectral Trained on simulated
(2023) adaptive beamforming efficiency; accurate data; lacks real-channel
in mmWave massive beam tracking robustness
MIMO
Gaydos et al. | Adaptive beamforming | Hardware-based Focused only on beam
(2022) with software-defined validation; real-time control; no resource
radio arrays adaptability allocation integration
Samarakoon et | Distributed federated Privacy-preserving No multimodal input;
al. (2020) learning for vehicular learning; scalable computational overhead
URLLC at scale
Lietal. (2022) | UAV-aided digital twin | Real-time edge Scenario-specific;
for URLLC simulation; enhanced | limited generalization
reliability
Barua et al. Survey of multimodal Comprehensive No direct focus on RF;
(2023) ML applications taxonomy of fusion lacks deployment
methods strategies for 6G

Table 1: Comparative Analysis of AI-Driven Beamforming and Resource Management
Studies for 5G/6G Networks

This review positions the need for an integrated framework that combines reinforcement
learning, resource-aware beamforming, and multimodal ML data fusion to address the
practical limitations of current solutions. Unlike previous works, the proposed approach
leverages realistic RF channel characteristics and multi-objective optimization, making it
better aligned with the performance and reliability requirements of 6G networks.

3. System Model and Problem Formulation

3.1 Network Setting

We consider a downlink 6G cellular system where a base station (BS) equipped with a
uniform linear array of N; transmit antennas serves K user equipment (UE) terminals
simultaneously. The UEs are heterogeneous, including handheld devices, vehicular nodes,
and low-power [oT sensors. Communication occurs over mmWave bands (28-60 GHz) and
sub-THz bands (100-300 GHz), consistent with 6G visions of ultra-wideband operation
(You et al., 2021; Haque et al., 2024). Hybrid beamforming is adopted, leveraging both
analog phase shifters and digital precoding to balance cost and performance (Lavdas et al.,

2023). The BS maintains a global power budget P,,,x, Which constrains allocation decisions
across multiple beams.
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3.2 Channel Model

Propagation is modeled using DeepMIMO and standardized by 3GPP TR 38.901, capturing
realistic outdoor and indoor deployment scenarios. The channel between the BS and UE kk is
expressed as

L

hy = z oy 1ac (O 1),

I=1

where LL is the number of multipath components, ay; denotes the complex gain of the 11-th
path (including path loss, shadow fading, and small-scale fading), and a.(6y)) is the BS
array response vector at angle of departure 0y (Alsabah et al., 2021).

The received signal at UE k is

— hH H
Vk = thka + Z thij + ny,
j£k

where wy is the beamforming vector, xj is the transmitted symbol, and ny ~ CN (0, 62) is
additive white Gaussian noise.

The signal-to-interference-plus-noise ratio (SINR) is given by

H
hy wicl* Pk
Tjzk  Ihiiw;l2pj+0?’

SINRk =

where py is the transmit power assigned to UE k. The achievable data rate is then
Rk =B lOg 2 (1 + SINRk),
with B representing the allocated bandwidth.

3.3 Resource Variables and Constraints

Resource management involves power, bandwidth, and beam allocation across UEs. Three
primary constraints govern the system:
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1. Power constraint

Z pk max

2. Latency constraint
Dy < Dpax VK
where Dy is the end-to-end latency and D, 1s @ URLLC target (typically <1 ms).
3. QoS constraint
Rk = Rpin, VK,
ensuring service guarantees for delay-sensitive applications.
3.4 Optimization Objectives
The multi-objective design accounts for three performance metrics:

« Throughput maximization: maximize Yk_; Ry
« Latency minimization: minimize YX_;, Dy

K
Zk=1 Rk

e Energy efficiency: maximize
2k=1 Pk

We therefore formulate a weighted objective:
R
max )le Rk_)\zz Dk+}\32k 1 K
{wi,pi} Zk 1 pk

where A{,A;, A3 tune the balance across competing goals (Xie et al., 2023; Bairagi et al.,
2021).

3.5 Al Problem Framing

The above optimization is reformulated into a reinforcement learning (RL) paradigm,
which allows adaptive, data-driven policy learning under uncertain channel dynamic
(Lavdas et al., 2023; Samarakoon et al., 2020):
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o State (s;): CSI from DeepMIMO/3GPP models, user positions, traffic queues, and
interference levels.

e Action (a;): selection of beamforming vectors {wy} and power allocations {py}.

e Reward (r;): a composite function aligning throughput, latency, and efficiency:

K K
K
_ R
I‘t=7tlz Rk_kzz Dk+)\3%
k=1 k=1 Li=1 Pk

The RL agent learns policies T(a; | s;) that maximize the expected cumulative reward over
time:

\max

m \mathbb{E}\Bi
\ {EN g[z{t=o}:°ytr\3ig ]

where y € (0,1) is the discount factor. This enables adaptive beamforming and resource
management under realistic mmWave/THz propagation conditions, with robustness to
mobility, fading, and interference.

4. Proposed AI-Driven RF Solution

4.1 Multimodal ML for RF Fusion

Traditional RF optimization approaches rely almost exclusively on channel state information
(CSI), which limits adaptability in dynamic 6G environments. Our solution extends beyond
unimodal CSI by integrating multimodal inputs:

e (Sl extracted from DeepMIMO/3GPP models.

e Mobility and location metadata from user equipment (UE) sensors.

¢ Environmental data such as blockage probability, Doppler spreads, and interference
levels.

To process these heterogeneous features, we design a Transformer—Graph Neural Network
(GNN) fusion model. The Transformer captures temporal dependencies within time-varying
CSI sequences, enabling reliable beam tracking. The GNN encodes spatial relationships
between antennas and users, reflecting the topology of BS-UE links. Joint fusion produces a
richer latent representation that improves robustness under user mobility, multi-user
interference, and sudden channel degradation (Baltrusaitis et al., 2019; Barua et al., 2023;
Yan et al., 2023).
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To overcome the limitations of CSI-only optimization, our framework integrates multimodal
features that capture temporal, spatial, and environmental dynamics. Table X summarizes the
specific input types, the models used to process them, and the associated references. This
structured fusion of CSI, mobility, and environmental data through Transformer and GNN
modules enables more robust and adaptive beamforming in 6G scenarios.

Input/Method Description Reference
Channel State Extracted from DeepMIMO/3GPP models, Baltrusaitis et
Information (CSI) captures time-varying channel conditions al. (2019)
Mobility and Derived from user equipment sensors to reflect Barua et al.
Location Metadata movement and positioning (2023)
Environmental Data | Includes blockage probability, Doppler spreads, Yan et al.

and interference levels for dynamic adaptation (2023)
Transformer Captures temporal dependencies in CSI sequences | Baltrusaitis et

for reliable beam tracking al. (2019)
Graph Neural Encodes spatial relationships between antennas Barua et al.
Network (GNN) and users, modeling BS—-UE topology (2023)
Fusion Model Combines Transformer + GNN outputs to Yan et al.

produce richer latent representation for robustness | (2023)

Table 2: Multimodal ML Inputs and Fusion Methods for RF Optimization

Note: The integration of multimodal inputs through Transformer and GNN fusion enhances
adaptability compared to unimodal CSI approaches. By combining temporal channel
dynamics, spatial user relationships, and environmental factors, the framework supports more
reliable beamforming and resource management in dynamic 6G deployments.

4.2 Reinforcement Learning Framework

The adaptive decision-making layer is built on Proximal Policy Optimization (PPO). PPO is
selected due to its strong balance of training stability, sample efficiency, and robustness to
noisy gradients in wireless environments. Unlike DDPG or SAC, PPO avoids excessive
hyperparameter tuning while still handling continuous action spaces such as beam angles and
power levels (Samarakoon et al., 2020).

The action space consists of:

e Beamforming vectors {wy} for each UE.
e Power allocations {py} subject to Py«
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The state space includes CSI, mobility traces, queue lengths, interference maps, and
environmental sensing features.

The reward function integrates three objectives:

K

K
K
R
rt=xlz Ry — AZZ Dy + 7\3%.
k=1 k=1 k=1 Pk

This ensures the agent does not over-optimize for one metric (e.g., throughput) at the cost of
URLLC latency or energy efficiency (Xie et al., 2023; Bairagi et al., 2021).

4.3 Training Pipeline

The training process blends supervised learning and reinforcement learning, reducing
convergence time and improving generalization:

1. Supervised Pretraining
o The multimodal encoder (Transformer—GNN) is pretrained on DeepMIMO
CSI with labeled optimal beam indices.
o This stage initializes the feature extractor with domain-specific priors.
2. Reinforcement Learning Fine-Tuning
o The pretrained encoder is integrated with the PPO agent.
o Agents interact with simulated RF environments modeled by 3GPP TR
38.901.
o Beamforming vectors and resource allocations are updated based on long-term
performance.
3. Reward Shaping with Domain Knowledge
o Latency penalties are enforced if URLLC thresholds are violated.
o Energy rewards are weighted more heavily when UE battery levels are low.
o Service-level differentiation is supported, where mission-critical UEs are
prioritized over eMBB users.

This pipeline accelerates convergence and enhances policy transferability to real-world
deployments (Alsabah et al., 2021; Lavdas et al., 2023).

4.4 Algorithmic Flow

The agent—environment interaction is illustrated below.
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Pseudocode:
Initialize PPO agent n8, multimodal encoder f¢, replay buffer
Pretrain f¢p on DeepMIMO dataset with supervised beam labels
for each training episode do
Reset RF environment with 3GPP TR 38.901 parameters
Observe initial state sO = f¢p(CSI, mobility, sensing)
for each timestep t do
Select action at ~ O(st)
Apply beamforming + resource allocation
Receive reward rt and next state st+1
Store (st, at, rt, st+1) in buffer
Update policy n6 using PPO clipped objective
end for
end for
The PPO update ensures stable improvement while preventing destructive policy oscillations.
4.5 Hardware and Software Considerations
The proposed framework is designed for real-time inference in 6G base stations:
o Software stack:
o PyTorch/TensorFlow for deep learning model implementation.
o Stable Baselines3 for PPO reinforcement learning.
o GNU Radio for integration with RF front-end signal processing.

e Hardware acceleration:
o GPUs (e.g., NVIDIA A100) for training.
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o FPGASs/DSPs for real-time beamforming inference at the BS.
o Edge servers to offload computation from user devices while maintaining <1
ms latency.
o Latency optimization:
o Neural network quantization and pruning for fast inference.
o Batch normalization and pipeline parallelism to reduce processing delay.
o Efficient CUDA kernels to accelerate CSI-beam mapping.

This hardware—software co-design ensures that the proposed Al-driven RF optimization
framework satisfies URLLC latency targets while scaling to large multi-user environments
(Popovski et al., 2019; Alsabah et al., 2021).

5. Data Collection and Simulation Setup
5.1 Channel Data Sources

To train and evaluate the proposed framework, we employed both synthetic and
measurement-based datasets. Synthetic CSI was generated using the DeepMIMO dataset
(https://deepmimo.cs.virginia.edu/), a large-scale open platform for massive MIMO systems
that supports realistic geometry-based channel modeling under varying antenna
configurations, frequencies, and mobility scenarios. DeepMIMO provides multi-path

parameters derived from ray-tracing, making it well suited for testing beamforming and
resource allocation strategies in 6G (Alsabah et al., 2021).

In addition, real-world measurement datasets were incorporated from IEEE DataPort
(https://ieee-dataport.org/search/node/wireless). These include channel sounder
measurements across mmWave and sub-THz frequencies, providing ground-truth data for
validating the generalization of our algorithms beyond synthetic conditions. The combination
of synthetic and measured channels reduces dataset bias and improves robustness (Haque et
al., 2024).

5.2 Simulation Environment

System-level simulations were carried out using ns-3 with its mmWave extension
(https://www.nsnam.org/). This allowed modeling of realistic protocol stacks, mobility
patterns, and multi-user scheduling under URLLC and eMBB coexistence (Bairagi et al.,

2021). For ray-tracing validation, Wireless Insite (https://www.remcom.com/wireless-insite)
was employed to model urban and indoor propagation, including diffraction, reflection, and

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com


https://deepmimo.cs.virginia.edu/
https://ieee-dataport.org/search/node/wireless
https://www.nsnam.org/
https://www.remcom.com/wireless-insite

- \» Power System Technology

Y I1SSN:1000-3673

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 15-10-2025

scattering effects at mmWave/THz bands (You et al., 2021). Together, these simulators
enabled end-to-end evaluation under both packet-level and physical-layer conditions.

5.3 Data Preprocessing

Prior to training, CSI matrices and sensing features underwent standardized preprocessing
steps:

o Feature extraction: antenna response vectors, delay—angle profiles, and Doppler
shifts were derived from DeepMIMO/IEEE DataPort inputs.

o Normalization: input features were normalized per subcarrier and antenna element to
stabilize learning.

o Dimensionality reduction: principal component analysis (PCA) was applied to
compress high-dimensional CSI without discarding critical spatial features.

e Multimodal fusion preparation: auxiliary features (mobility traces, interference
maps) were temporally aligned with CSI snapshots for integration into the
Transformer—GNN encoder (Baltrusaitis et al., 2019; Barua et al., 2023).

5.4 Train—Test—Validation Protocol

Data was partitioned into 70% training, 15% validation, and 15% testing. The training set
was used to pretrain the multimodal encoder and train the PPO agent. Validation ensured
hyperparameter tuning (e.g., learning rates, clipping ratios) did not lead to overfitting. Test
scenarios included unseen propagation environments and mobility profiles, ensuring the
generalization of the policy to new deployments (Lavdas et al., 2023).

5.5 Evaluation Metrics
Performance was assessed using both communication-level and learning-level metrics:

o Throughput (Mbps): average sum rate across UEs.

o Latency (ms): end-to-end packet delivery delay.

o Bit Error Rate (BER): evaluated under varying SINR conditions.

o Energy efficiency (bits/Joule): throughput normalized by transmit power (Xie et al.,
2023).

e Cumulative rewards: average discounted return across episodes, capturing the trade-
offs embedded in the reward design.
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This dual evaluation strategy ensures that improvements are measured not only in physical
layer metrics but also in terms of long-term policy effectiveness, demonstrating the practical
utility of the proposed Al-driven RF optimization framework.

Dataset/Tool Frequency Range Purpose Reference

DeepMIMO 28-60 GHz Synthetic CSI generation Alsabah et al.,
(mmWave) 2021

IEEE DataPort mmWave and sub- Measurement-based Haque et al.,
THz validation 2024

ns-3 (mmWave Protocol-level End-to-end system Bairagi et al.,

ext.) simulation 2021

Wireless Insite mmWave/THz bands | Ray-tracing propagation You et al.,, 2021

modeling

Table 3: Dataset and Simulation Tools Summary
6. Experiments and Data Analysis
6.1 Baseline Models

For a rigorous comparison, we evaluated the proposed multimodal reinforcement learning
(RL) framework against two representative baselines:

1. Heuristic beamforming
o Codebook-based beam selection where predefined beams are scanned, and the
one with the strongest received signal is selected.
o Low complexity and widely used in early mmWave/THz trials.
o Lacks adaptability to rapid fading and user mobility (Cox et al., 1987; Gaydos
et al., 2022).
2. Non-adaptive resource management
o Equal power allocation across UEs with round-robin scheduling.
o Provides fairness but cannot adapt to QoS requirements of URLLC vs eMBB
(Bairagi et al., 2021).
o Often used as a benchmark in 5G resource allocation studies.

These baselines reflect conventional approaches that prioritize simplicity over adaptability,
offering a clear lower bound for evaluating Al-driven strategies.
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6.2 Performance Comparisons
Experiments were conducted across diverse channel and deployment scenarios:

o High-mobility vehicular users (up to 120 km/h) with fast Doppler variations.

e Dense urban microcells with high blockage probability and severe multipath.

o Indoor low-SNR scenarios reflecting industrial IoT deployments.

e Mixed URLLC—eMBB coexistence requiring differentiated service guarantees.

Results demonstrated consistent superiority of the proposed system:

e Throughput: Outperformed heuristic beamforming by 25-40% on average. Gains
were most pronounced in dense multipath conditions due to better interference
suppression.

60 Throughput vs. User Load

—e— Heuristic Beamforming
—=— Non-Adaptive Resource Mgmt
—a— Proposed RL Framework

55

50
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i
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30t
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Figure 1: Throughput vs. User Load

o Latency: Maintained <1 ms packet delay under URLLC constraints, reducing latency
variance by 35% compared to non-adaptive scheduling.
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Figure 2: Latency CDF

e Energy efficiency: Improved by 25-30% through dynamic power allocation,
particularly in scenarios with heterogeneous UE requirements (Xie et al., 2023).

451

B
o

Energy Efficiency (bits/Joule)

N
)

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com

w
wn
T

W
=)
T

Energy Efficiency vs. User Load

Heuristic
—u— Non-Adaptive
—a— Proposed RL

20 40 60 80
Number of Users

Figure 4: Energy Efficiency vs. User Load




.. Power System Technology

/Y I1SSN:1000-3673

s O
-

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 15-10-2025

e Bit Error Rate (BER): Achieved reductions of up to 20% compared to baselines,
highlighting robustness to fading and interference.

BER vs. SINR
100} T
— Heuristic
e —— Non-Adaptive
\\\\ - —— Proposed RL
i
e 10—1 L
3
©
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Figure 5: BER vs. SINR
6.3 Ablation Studies

To understand the contribution of each architectural component, we conducted ablation tests:

e Without Transformer: System performance degraded under high-mobility
conditions, with throughput reduced by ~18%. This confirmed the importance of
temporal modeling in capturing fast channel variations.

o Without GNN: Latency increased significantly in multi-user settings due to
ineffective interference coordination.

e RL agent substitution: Replacing PPO with DDPG led to unstable convergence,
while SAC achieved moderate stability but lower cumulative rewards.

e Without multimodal fusion: Performance dropped across all metrics, especially in

blockage-heavy environments, confirming that CSI-only approaches fail to capture
the richness of real-world dynamics (Barua et al., 2023; Yan et al., 2023).
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These results reinforce that each module Transformer, GNN, multimodal fusion, and PPO
provides unique and necessary contributions.

Ablation Study Results
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Figure 6: Ablation Study Results
6.4 Learning Curves and Convergence
Learning stability was monitored via cumulative reward curves:

e PPO exhibited smooth and monotonic convergence within 5,000 episodes, reaching
stable reward levels.

e DDPG and SAC showed oscillatory learning behavior, with reward spikes followed
by collapses, highlighting sensitivity to hyperparameters (Samarakoon et al., 2020).

e Incorporating domain knowledge into reward shaping accelerated convergence by
~20% and reduced variance between runs (Lavdas et al., 2023).

The learning dynamics confirm that PPO, combined with multimodal encoding, provides the
best trade-off between stability and performance.
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6.5 Visualizations
Visualization aided interpretation of results and policy behaviors:

e Throughput-Latency Trade-off Curves: The proposed method consistently
achieved Pareto-efficient points beyond both baselines, especially in URLLC-
dominant scenarios.

e Beam Pattern Heatmaps: Showed narrower, interference-resistant beams compared
to heuristic designs, validating the role of adaptive beam selection (Beuret & Thiran,
2024).

e Reward Trend Graphs: Illustrated stable upward trends, demonstrating reduced
variance across episodes and robustness to stochastic channel effects.

o Energy Efficiency vs. User Load Plots: Highlighted scalability, showing stable
energy-per-bit as the number of UEs increased.

These visualizations not only confirmed numerical improvements but also provided
qualitative insights into adaptive beam behavior.

6.6 Statistical Analysis

To ensure robustness, we applied statistical hypothesis testing across multiple independent
trials:

o Paired t-tests confirmed significant improvements in throughput and latency, with
p < 0.01

e One-way ANOVA validated energy efficiency differences across baselines, showing
that the proposed approach consistently outperformed alternatives under varying
loads.

o Effect size analysis indicated medium-to-large practical significance for throughput
and latency improvements, not merely statistical artifacts.

This comprehensive statistical treatment ensures that observed gains are reliable,
reproducible, and not due to random chance (Alsabah et al., 2021; Popovski et al., 2019).

7. Discussion

The results confirm that reinforcement learning (RL)-based adaptive strategies clearly
outperform classical heuristics in the management of beamforming and resource allocation.
Traditional methods such as codebook beamforming and fixed power scheduling rely o

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com



. \» Power System Technology

Y 1SSN:1000-3673

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 15-10-2025

static mappings and fail to account for the variability of wireless environments. RL, by
contrast, continuously interacts with the RF environment, learns temporal and spatial
dependencies, and updates decisions in real time. This enables the agent to balance
throughput, latency, and energy efficiency simultaneously, a capability that deterministic
algorithms cannot achieve (Samarakoon et al., 2020; Lavdas et al., 2023). The use of
multimodal features beyond CSI, including mobility traces and environmental metadata,
further strengthens adaptability, ensuring more robust performance in dynamic 6G contexts
such as vehicular communications and dense urban deployments (Baltrusaitis et al., 2019;
Barua et al., 2023).

The implications for future 6G deployments are substantial. With projected demands of
terabit-scale throughput and sub-millisecond latency, static solutions will not suffice. Al-
driven beamforming and resource management provide a path to meeting these targets while
supporting diverse services such as URLLC, eMBB, and massive IoT. In practice, this means
base stations could autonomously adapt to high-mobility users, interference-heavy
environments, and service heterogeneity without requiring manual intervention. This aligns
with the broader vision of 6G networks as Al-native, context-aware platforms capable of
integrating sensing, communication, and computing into a unified system (You et al., 2021;
Letaief et al., 2019).

At the same time, several challenges in computational scalability and environment
complexity must be acknowledged. Training RL agents over large antenna arrays and multi-
user scenarios demands high computational resources and extended training times, even when
using synthetic datasets such as DeepMIMO. Real-world deployments will introduce
additional complexity from hardware non-idealities, correlated fading, and mobility beyond
what current simulators can fully capture (Alsabah et al., 2021). Furthermore, real-time
inference at the BS is constrained by strict latency budgets; achieving sub-millisecond
decision-making requires efficient model compression, hardware acceleration, and low-
overhead integration into baseband processing pipelines (Haque et al., 2024; Xie et al., 2023).

These challenges suggest several directions for future work. First, distributed and federated
RL could distribute the computational load across multiple base stations and user devices,
accelerating training while maintaining privacy (Samarakoon et al., 2020). Second, joint
sensing-communication optimization should be pursued, leveraging the dual use of RF
signals for both data transmission and environmental awareness, thereby enriching

multimodal inputs for adaptive policies (You et al., 2021). Third, exploring hybrid solutions
that integrate rule-based heuristics with Al-driven models could provide interpretable,
computationally lighter policies, suitable for scenarios where full RL pipelines may be
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impractical. Finally, cross-layer designs that integrate physical, MAC, and application-layer
objectives will be essential for end-to-end optimization in real-world 6G networks.

In summary, the findings highlight that Al-driven, multimodal RL strategies represent a
critical step toward fulfilling 6G’s ambitious performance targets. They provide robust,
adaptive solutions that address the limitations of heuristic approaches while opening
pathways for future innovation in distributed intelligence, joint optimization, and scalable
deployment.

8. Conclusion

This work proposed an Al-driven framework for adaptive beamforming and resource
management in 6G wireless networks, addressing the limitations of conventional heuristic
and static allocation methods. The novelty lies in the integration of multimodal machine
learning with reinforcement learning (RL) to capture both temporal channel variations and
spatial user relationships. By leveraging CSI alongside mobility and environmental features,
the framework enables more resilient decision-making in dynamic RF conditions (Baltrusaitis
et al., 2019; Barua et al., 2023).

Extensive experiments demonstrated significant performance gains over baseline approaches.
Throughput increased by up to 40%, latency was consistently maintained below the sub-
millisecond URLLC threshold, and energy efficiency improved through adaptive power
allocation. Ablation studies confirmed the necessity of each component Transformer, GNN,
multimodal fusion, and PPO in achieving robust outcomes. These improvements validate the
ability of RL-based adaptive strategies to outperform deterministic algorithms, particularly in
high-mobility and interference-prone scenarios (Samarakoon et al., 2020; Xie et al., 2023).

The findings carry strong implications for Al-native 6G deployments. They demonstrate that
integrating learning-based optimization directly into RF design can help realize terabit-scale
connectivity, ultra-reliable communication, and energy-efficient operation at scale. Such
advances align with international 6G roadmaps that envision networks as self-optimizing,
context-aware, and intelligence-driven platforms (You et al., 2021; Letaief et al., 2019).

Overall, this study establishes a foundation for the next generation of ultra-reliable, low-
latency communication systems. By proving the feasibility of AI-RF integration under
realistic channel models, it highlights a path forward for scalable and adaptive wireless
infrastructures that will shape the core of future 6G networks.
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