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Abstract 

The advent of 6G wireless networks introduces unprecedented challenges in delivering ultra-

high throughput, ultra-reliable low-latency communication (URLLC), and massive 

connectivity, particularly in millimeter-wave (mmWave) and terahertz (THz) frequency 

bands. Traditional RF engineering approaches, while foundational, face limitations in 

adapting quickly to the dynamic and complex wireless environments inherent to 6G. This 

paper presents a novel integration of advanced machine learning techniques focusing on 

reinforcement learning and multimodal deep neural networks with cutting-edge RF 

beamforming and resource allocation strategies. Leveraging real-world and high-fidelity 

synthetic datasets, including DeepMIMO channel models and ns-3-based network 

simulations, we develop and evaluate an AI-driven adaptive beamforming framework that 

dynamically optimizes antenna array configurations and spectrum resources in response to 

environmental variability. Experimental results demonstrate significant improvements in 

throughput, latency reduction, and energy efficiency compared to baseline heuristics, 

achieving up to 30% enhancement in communication reliability under realistic channel 

conditions. This work not only bridges the gap between theoretical AI methodologies and 

practical RF systems but also offers a scalable, interpretable solution poised to accelerate the 

deployment of intelligent 6G networks. The findings provide a roadmap for future research in 

AI-native wireless communications and establish a foundation for ultra-reliable, intelligent 

resource management for next-generation connectivity. 
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1. Introduction 

The transition from 5G to 6G reflects a shift from gigabit connectivity to the pursuit of 

terabit-per-second data rates, sub-millisecond latency, and near-perfect reliability. The 

International Telecommunication Union (ITU) and IEEE outline 6G as a paradigm that 

integrates ultra-reliable low-latency communication (URLLC), massive connectivity, and 

advanced sensing into a single intelligent framework (Letaief et al., 2019; You et al., 2021; 

Alsabah et al., 2021). Unlike 5G, which primarily balanced enhanced mobile broadband 

(eMBB) and URLLC, 6G must deliver unprecedented levels of service quality for mission-

critical and immersive applications such as holographic telepresence, digital twins, and 

industrial automation (Popovski et al., 2019; Khan et al., 2022). 

Meeting these ambitious goals requires exploiting millimeter-wave (mmWave) and terahertz 

(THz) bands, where wide bandwidths enable higher capacity. Yet these bands face severe 

propagation challenges, including high path loss, beam misalignment, blockage, and rapid 

channel fading (Alsharif et al., 2020; Haque et al., 2024). Conventional communication 

strategies that rely on static beam management or deterministic resource allocation struggle to 

cope with these impairments under dynamic conditions. 

Artificial intelligence (AI), and in particular reinforcement learning (RL), offers new 

opportunities to handle such complexity. RL agents can continuously adapt beam directions, 

power levels, and resource blocks by learning from the environment, thereby improving 

robustness in non-stationary radio frequency (RF) conditions (Lavdas et al., 2023; Gaydos et 

al., 2022). AI-driven adaptive beamforming and resource management therefore provide a 

pathway to enhance URLLC performance while maintaining spectral efficiency (Bairagi et 

al., 2021; Xie et al., 2023). 

Despite progress, existing AI/ML solutions often remain limited by simplified models, 

unrealistic assumptions, or poor scalability in large multi-user environments (Barua et al., 

2023; Yan et al., 2023). Many works address beamforming or resource allocation in isolation, 

without jointly modeling real RF impairments, multimodal signal interactions, and end-to-end 

system constraints. This creates a gap between algorithmic potential and practical 6G 

deployment. 

This study addresses that gap by proposing a multimodal machine learning framework for 

adaptive beamforming and intelligent resource management in 6G networks. Our 

contributions are fourfold. First, we integrate multimodal data sources channel state 
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information, sensor metadata, and contextual features to enable robust decision-making. 

Second, we implement a reinforcement learning model for adaptive beam control under 

mmWave/THz fading. Third, we design an experimental testbed that evaluates our method in 

realistic dynamic environments. Finally, results demonstrate significant improvements in 

reliability, latency, and throughput compared to baseline schemes. These findings highlight 

the potential of AI-driven RF optimization as a foundation for 6G wireless systems (Alsabah 

et al., 2021; Baltrusaitis et al., 2019; Barua et al., 2023). 

2. Background and Related Works 

2.1 Beamforming in 5G and 6G Networks 

Beamforming is a cornerstone of modern wireless communication, serving as the backbone 

of 5G deployments and a defining feature of 6G visions. In 5G, massive multiple-input 

multiple-output (MIMO) and hybrid beamforming architectures enable higher spectral 

efficiency by directing energy into narrow beams, thereby improving coverage and 

throughput (Lavdas et al., 2023). Yet, as systems scale toward higher frequencies, several 

hardware and channel-related barriers emerge. At millimeter-wave (mmWave) and terahertz 

(THz) bands, large bandwidths allow data rates approaching terabits per second, but severe 

free-space path loss, susceptibility to blockage, beam misalignment, and Doppler shifts limit 

reliability (Alsharif et al., 2020; Haque et al., 2024). Furthermore, RF front-end design 

becomes increasingly complex, as phase noise, power amplifier efficiency, and antenna array 

calibration directly affect performance (You et al., 2021). 

Adaptive beamforming algorithms have evolved in response to these challenges. Early 

solutions such as robust Capon beamformers (Cox et al., 1987) emphasized resilience against 

steering vector mismatch, while more recent techniques leverage tensor decomposition or 

rank-constrained optimizations to improve lateral resolution and adaptability (Beuret & 

Thiran, 2024). Deep learning-based beamformers, trained on synthetic channel state 

information (CSI), demonstrate significant improvements in beam tracking accuracy and 

interference suppression (Lavdas et al., 2023). Yet scalability, energy efficiency, and 

robustness under real-time mobility remain open problems, especially as 6G networks extend 

to highly dynamic vehicular, aerial, and industrial IoT scenarios. 

2.2 AI and ML Approaches in RF Optimization 

The integration of artificial intelligence into RF optimization marks a paradigm shift from 

deterministic to data-driven strategies. Reinforcement learning (RL) frameworks have gained 

traction for adaptive power control, scheduling, and beam management in non-stationary 

wireless environments. RL agents optimize long-term rewards by continuously interacting 



 
Received: 16-08-2025        Revised: 05-09-2025 Accepted: 15-10-2025 

 

 527 Volume 49 Issue 4 (October 2025) 

https://powertechjournal.com 

 

with the RF environment, enabling fast adaptation to user mobility, varying interference, and 

multi-service coexistence (Gaydos et al., 2022; Lavdas et al., 2023). Beyond RL, federated 

learning introduces distributed model training across edge devices, reducing communication 

overhead and preserving privacy while supporting URLLC in vehicular and industrial 

systems (Samarakoon et al., 2020). Digital twin-based approaches extend this concept by 

simulating real-time edge-assisted decisions in UAV-aided 6G networks, showing potential 

for ultra-reliable communication under extreme latency requirements (Li et al., 2022). 

While these methods highlight the feasibility of AI-driven optimization, they are constrained 

by the type and quality of input data. Most existing works depend exclusively on CSI, 

neglecting contextual information such as user mobility traces, environmental sensing, or 

service-specific requirements. Multimodal machine learning (MML) provides an avenue to 

overcome this by integrating heterogeneous data sources. Surveys in MML emphasize its 

ability to fuse multiple modalities visual, textual, and signal-based to improve generalization 

and robustness in complex decision-making tasks (Baltrusaitis et al., 2019; Barua et al., 

2023). Applying MML to 6G would allow joint exploitation of CSI, sensor metadata, and 

contextual features, enabling adaptive algorithms to outperform unimodal approaches in real 

RF conditions. 

2.3 Limitations of Prior Work 

Despite progress, critical gaps remain. First, reliance on synthetic or simplified channel 

models undermines the robustness of many AI-based solutions, as real-world RF impairments 

such as non-linear distortion, phase noise, and correlated fading are often ignored (Alsabah et 

al., 2021). Second, most prior studies focus on single-objective optimization, targeting either 

latency, throughput, or energy efficiency, without addressing the inherent trade-offs of multi-

service environments where eMBB and URLLC must coexist (Bairagi et al., 2021; Xie et al., 

2023). Third, the absence of multimodal data fusion leaves AI models vulnerable to 

overfitting and weak adaptation under sudden channel variations. Integrating multimodal 

signals could significantly enhance adaptability and scalability, yet research in this area 

remains limited (Barua et al., 2023; Yan et al., 2023). 

2.4 Comparative Analysis of Existing Research 

The table below summarizes representative contributions, emphasizing their strengths and 

limitations relative to the requirements of 6G adaptive beamforming and resource 

management. 
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Study Approach Strengths Limitations 

Lavdas et al. 

(2023) 

Deep learning for 

adaptive beamforming 

in mmWave massive 

MIMO 

Improved spectral 

efficiency; accurate 

beam tracking 

Trained on simulated 

data; lacks real-channel 

robustness 

Gaydos et al. 

(2022) 

Adaptive beamforming 

with software-defined 

radio arrays 

Hardware-based 

validation; real-time 

adaptability 

Focused only on beam 

control; no resource 

allocation integration 

Samarakoon et 

al. (2020) 

Distributed federated 

learning for vehicular 

URLLC 

Privacy-preserving 

learning; scalable 

No multimodal input; 

computational overhead 

at scale 

Li et al. (2022) UAV-aided digital twin 

for URLLC 

Real-time edge 

simulation; enhanced 

reliability 

Scenario-specific; 

limited generalization 

Barua et al. 

(2023) 

Survey of multimodal 

ML applications 

Comprehensive 

taxonomy of fusion 

methods 

No direct focus on RF; 

lacks deployment 

strategies for 6G 

Table 1: Comparative Analysis of AI-Driven Beamforming and Resource Management 

Studies for 5G/6G Networks 

This review positions the need for an integrated framework that combines reinforcement 

learning, resource-aware beamforming, and multimodal ML data fusion to address the 

practical limitations of current solutions. Unlike previous works, the proposed approach 

leverages realistic RF channel characteristics and multi-objective optimization, making it 

better aligned with the performance and reliability requirements of 6G networks. 

3. System Model and Problem Formulation 

3.1 Network Setting 

We consider a downlink 6G cellular system where a base station (BS) equipped with a 

uniform linear array of Nt transmit antennas serves K user equipment (UE) terminals 

simultaneously. The UEs are heterogeneous, including handheld devices, vehicular nodes, 

and low-power IoT sensors. Communication occurs over mmWave bands (28–60 GHz) and 

sub-THz bands (100–300 GHz), consistent with 6G visions of ultra-wideband operation 

(You et al., 2021; Haque et al., 2024). Hybrid beamforming is adopted, leveraging both 

analog phase shifters and digital precoding to balance cost and performance (Lavdas et al., 

2023). The BS maintains a global power budget  Pmax, which constrains allocation decisions 

across multiple beams. 
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3.2 Channel Model 

Propagation is modeled using DeepMIMO and standardized by 3GPP TR 38.901, capturing 

realistic outdoor and indoor deployment scenarios. The channel between the BS and UE kk is 

expressed as 

𝐡k = ∑

L

l=1

αk,l𝐚t(θk,l), 

where LL is the number of multipath components, αk,l denotes the complex gain of the ll-th 

path (including path loss, shadow fading, and small-scale fading), and 𝐚t(θk,l) is the BS 

array response vector at angle of departure θk,l (Alsabah et al., 2021). 

The received signal at UE k is 

yk = 𝐡k
H𝐰kxk + ∑

j≠k

𝐡k
H𝐰jxj + nk, 

where 𝐰k is the beamforming vector, xk is the transmitted symbol, and nk ∼ 𝒞𝒩(0, σ2) is 

additive white Gaussian noise. 

The signal-to-interference-plus-noise ratio (SINR) is given by 

SINRk =
∣𝐡k

H𝐰k∣2pk

∑j≠k ∣𝐡k
H𝐰j∣2pj+σ2, 

where pk is the transmit power assigned to UE k. The achievable data rate is then 

Rk = B log 2 (1 + SINRk), 

with B representing the allocated bandwidth. 

3.3 Resource Variables and Constraints 

Resource management involves power, bandwidth, and beam allocation across UEs. Three 

primary constraints govern the system: 
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1. Power constraint 

∑

K

k=1

pk ≤ Pmax. 

2. Latency constraint 

Dk ≤ Dmax, ∀k, 

where Dk is the end-to-end latency and Dmax is a URLLC target (typically <1 ms). 

3. QoS constraint 

Rk ≥ Rmin, ∀k, 

ensuring service guarantees for delay-sensitive applications. 

3.4 Optimization Objectives 

The multi-objective design accounts for three performance metrics: 

• Throughput maximization: maximize ∑K
k=1 Rk 

• Latency minimization: minimize ∑K
k=1 Dk 

• Energy efficiency: maximize 
∑K

k=1 Rk

∑K
k=1 pk

 

We therefore formulate a weighted objective: 

max
{𝐰k,pk}

λ1 ∑

K

k=1

Rk − λ2 ∑

K

k=1

Dk + λ3

∑K
k=1 Rk

∑K
k=1 pk

, 

where λ1, λ2, λ3  tune the balance across competing goals (Xie et al., 2023; Bairagi et al., 

2021). 

3.5 AI Problem Framing 

The above optimization is reformulated into a reinforcement learning (RL) paradigm, 

which allows adaptive, data-driven policy learning under uncertain channel dynamics 

(Lavdas et al., 2023; Samarakoon et al., 2020): 
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• State (st): CSI from DeepMIMO/3GPP models, user positions, traffic queues, and 

interference levels. 

• Action (at): selection of beamforming vectors {𝐰k} and power allocations {pk}. 

• Reward (rt): a composite function aligning throughput, latency, and efficiency: 

rt = λ1 ∑

K

k=1

Rk − λ2 ∑

K

k=1

Dk + λ3

∑K
k=1 Rk

∑K
k=1 pk

. 

The RL agent learns policies π(at ∣ st)  that maximize the expected cumulative reward over 

time: 

\max
π \mathbb{E}\Big[ ∑

{t=0}t
∞γtr

\Big
]
, 

where γ ∈ (0,1) is the discount factor. This enables adaptive beamforming and resource 

management under realistic mmWave/THz propagation conditions, with robustness to 

mobility, fading, and interference. 

4. Proposed AI-Driven RF Solution 

4.1 Multimodal ML for RF Fusion 

Traditional RF optimization approaches rely almost exclusively on channel state information 

(CSI), which limits adaptability in dynamic 6G environments. Our solution extends beyond 

unimodal CSI by integrating multimodal inputs: 

• CSI extracted from DeepMIMO/3GPP models. 

• Mobility and location metadata from user equipment (UE) sensors. 

• Environmental data such as blockage probability, Doppler spreads, and interference 

levels. 

To process these heterogeneous features, we design a Transformer–Graph Neural Network 

(GNN) fusion model. The Transformer captures temporal dependencies within time-varying 

CSI sequences, enabling reliable beam tracking. The GNN encodes spatial relationships 

between antennas and users, reflecting the topology of BS-UE links. Joint fusion produces a 

richer latent representation that improves robustness under user mobility, multi-user 

interference, and sudden channel degradation (Baltrusaitis et al., 2019; Barua et al., 2023; 

Yan et al., 2023). 
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To overcome the limitations of CSI-only optimization, our framework integrates multimodal 

features that capture temporal, spatial, and environmental dynamics. Table X summarizes the 

specific input types, the models used to process them, and the associated references. This 

structured fusion of CSI, mobility, and environmental data through Transformer and GNN 

modules enables more robust and adaptive beamforming in 6G scenarios. 

Input/Method Description Reference 

Channel State 

Information (CSI) 

Extracted from DeepMIMO/3GPP models, 

captures time-varying channel conditions 

Baltrusaitis et 

al. (2019) 

Mobility and 

Location Metadata 

Derived from user equipment sensors to reflect 

movement and positioning 

Barua et al. 

(2023) 

Environmental Data Includes blockage probability, Doppler spreads, 

and interference levels for dynamic adaptation 

Yan et al. 

(2023) 

Transformer Captures temporal dependencies in CSI sequences 

for reliable beam tracking 

Baltrusaitis et 

al. (2019) 

Graph Neural 

Network (GNN) 

Encodes spatial relationships between antennas 

and users, modeling BS–UE topology 

Barua et al. 

(2023) 

Fusion Model Combines Transformer + GNN outputs to 

produce richer latent representation for robustness 

Yan et al. 

(2023) 

Table 2: Multimodal ML Inputs and Fusion Methods for RF Optimization 

Note: The integration of multimodal inputs through Transformer and GNN fusion enhances 

adaptability compared to unimodal CSI approaches. By combining temporal channel 

dynamics, spatial user relationships, and environmental factors, the framework supports more 

reliable beamforming and resource management in dynamic 6G deployments. 

4.2 Reinforcement Learning Framework 

The adaptive decision-making layer is built on Proximal Policy Optimization (PPO). PPO is 

selected due to its strong balance of training stability, sample efficiency, and robustness to 

noisy gradients in wireless environments. Unlike DDPG or SAC, PPO avoids excessive 

hyperparameter tuning while still handling continuous action spaces such as beam angles and 

power levels (Samarakoon et al., 2020). 

The action space consists of: 

• Beamforming vectors {𝐰k} for each UE. 

• Power allocations {pk} subject to Pmax 
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The state space includes CSI, mobility traces, queue lengths, interference maps, and 

environmental sensing features. 

The reward function integrates three objectives: 

rt = λ1 ∑

K

k=1

Rk   −   λ2 ∑

K

k=1

Dk   +   λ3

∑K
k=1 Rk

∑K
k=1 pk

. 

This ensures the agent does not over-optimize for one metric (e.g., throughput) at the cost of 

URLLC latency or energy efficiency (Xie et al., 2023; Bairagi et al., 2021). 

4.3 Training Pipeline 

The training process blends supervised learning and reinforcement learning, reducing 

convergence time and improving generalization: 

1. Supervised Pretraining 

o The multimodal encoder (Transformer–GNN) is pretrained on DeepMIMO 

CSI with labeled optimal beam indices. 

o This stage initializes the feature extractor with domain-specific priors. 

2. Reinforcement Learning Fine-Tuning 

o The pretrained encoder is integrated with the PPO agent. 

o Agents interact with simulated RF environments modeled by 3GPP TR 

38.901. 

o Beamforming vectors and resource allocations are updated based on long-term 

performance. 

3. Reward Shaping with Domain Knowledge 

o Latency penalties are enforced if URLLC thresholds are violated. 

o Energy rewards are weighted more heavily when UE battery levels are low. 

o Service-level differentiation is supported, where mission-critical UEs are 

prioritized over eMBB users. 

This pipeline accelerates convergence and enhances policy transferability to real-world 

deployments (Alsabah et al., 2021; Lavdas et al., 2023). 

4.4 Algorithmic Flow 

The agent–environment interaction is illustrated below. 
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Pseudocode: 

Initialize PPO agent πθ, multimodal encoder fϕ, replay buffer 

Pretrain fϕ on DeepMIMO dataset with supervised beam labels 

for each training episode do 

    Reset RF environment with 3GPP TR 38.901 parameters 

    Observe initial state s0 = fϕ(CSI, mobility, sensing) 

    for each timestep t do 

        Select action at ~ πθ(st) 

        Apply beamforming + resource allocation 

        Receive reward rt and next state st+1 

        Store (st, at, rt, st+1) in buffer 

        Update policy πθ using PPO clipped objective 

    end for 

end for 

The PPO update ensures stable improvement while preventing destructive policy oscillations. 

4.5 Hardware and Software Considerations 

The proposed framework is designed for real-time inference in 6G base stations: 

• Software stack: 

o PyTorch/TensorFlow for deep learning model implementation. 

o Stable Baselines3 for PPO reinforcement learning. 

o GNU Radio for integration with RF front-end signal processing. 

• Hardware acceleration: 

o GPUs (e.g., NVIDIA A100) for training. 
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o FPGAs/DSPs for real-time beamforming inference at the BS. 

o Edge servers to offload computation from user devices while maintaining <1 

ms latency. 

• Latency optimization: 

o Neural network quantization and pruning for fast inference. 

o Batch normalization and pipeline parallelism to reduce processing delay. 

o Efficient CUDA kernels to accelerate CSI–beam mapping. 

This hardware–software co-design ensures that the proposed AI-driven RF optimization 

framework satisfies URLLC latency targets while scaling to large multi-user environments 

(Popovski et al., 2019; Alsabah et al., 2021). 

5. Data Collection and Simulation Setup 

5.1 Channel Data Sources 

To train and evaluate the proposed framework, we employed both synthetic and 

measurement-based datasets. Synthetic CSI was generated using the DeepMIMO dataset 

(https://deepmimo.cs.virginia.edu/), a large-scale open platform for massive MIMO systems 

that supports realistic geometry-based channel modeling under varying antenna 

configurations, frequencies, and mobility scenarios. DeepMIMO provides multi-path 

parameters derived from ray-tracing, making it well suited for testing beamforming and 

resource allocation strategies in 6G (Alsabah et al., 2021). 

In addition, real-world measurement datasets were incorporated from IEEE DataPort 

(https://ieee-dataport.org/search/node/wireless). These include channel sounder 

measurements across mmWave and sub-THz frequencies, providing ground-truth data for 

validating the generalization of our algorithms beyond synthetic conditions. The combination 

of synthetic and measured channels reduces dataset bias and improves robustness (Haque et 

al., 2024). 

5.2 Simulation Environment 

System-level simulations were carried out using ns-3 with its mmWave extension 

(https://www.nsnam.org/). This allowed modeling of realistic protocol stacks, mobility 

patterns, and multi-user scheduling under URLLC and eMBB coexistence (Bairagi et al., 

2021). For ray-tracing validation, Wireless Insite (https://www.remcom.com/wireless-insite) 

was employed to model urban and indoor propagation, including diffraction, reflection, and 

https://deepmimo.cs.virginia.edu/
https://ieee-dataport.org/search/node/wireless
https://www.nsnam.org/
https://www.remcom.com/wireless-insite
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scattering effects at mmWave/THz bands (You et al., 2021). Together, these simulators 

enabled end-to-end evaluation under both packet-level and physical-layer conditions. 

5.3 Data Preprocessing 

Prior to training, CSI matrices and sensing features underwent standardized preprocessing 

steps: 

• Feature extraction: antenna response vectors, delay–angle profiles, and Doppler 

shifts were derived from DeepMIMO/IEEE DataPort inputs. 

• Normalization: input features were normalized per subcarrier and antenna element to 

stabilize learning. 

• Dimensionality reduction: principal component analysis (PCA) was applied to 

compress high-dimensional CSI without discarding critical spatial features. 

• Multimodal fusion preparation: auxiliary features (mobility traces, interference 

maps) were temporally aligned with CSI snapshots for integration into the 

Transformer–GNN encoder (Baltrusaitis et al., 2019; Barua et al., 2023). 

5.4 Train–Test–Validation Protocol 

Data was partitioned into 70% training, 15% validation, and 15% testing. The training set 

was used to pretrain the multimodal encoder and train the PPO agent. Validation ensured 

hyperparameter tuning (e.g., learning rates, clipping ratios) did not lead to overfitting. Test 

scenarios included unseen propagation environments and mobility profiles, ensuring the 

generalization of the policy to new deployments (Lavdas et al., 2023). 

5.5 Evaluation Metrics 

Performance was assessed using both communication-level and learning-level metrics: 

• Throughput (Mbps): average sum rate across UEs. 

• Latency (ms): end-to-end packet delivery delay. 

• Bit Error Rate (BER): evaluated under varying SINR conditions. 

• Energy efficiency (bits/Joule): throughput normalized by transmit power (Xie et al., 

2023). 

• Cumulative rewards: average discounted return across episodes, capturing the trade-

offs embedded in the reward design. 
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This dual evaluation strategy ensures that improvements are measured not only in physical 

layer metrics but also in terms of long-term policy effectiveness, demonstrating the practical 

utility of the proposed AI-driven RF optimization framework. 

Dataset/Tool Frequency Range Purpose Reference 

DeepMIMO 28–60 GHz 

(mmWave) 

Synthetic CSI generation Alsabah et al., 

2021 

IEEE DataPort mmWave and sub-

THz 

Measurement-based 

validation 

Haque et al., 

2024 

ns-3 (mmWave 

ext.) 

Protocol-level End-to-end system 

simulation 

Bairagi et al., 

2021 

Wireless Insite mmWave/THz bands Ray-tracing propagation 

modeling 

You et al., 2021 

Table 3: Dataset and Simulation Tools Summary 

6. Experiments and Data Analysis 

6.1 Baseline Models 

For a rigorous comparison, we evaluated the proposed multimodal reinforcement learning 

(RL) framework against two representative baselines: 

1. Heuristic beamforming 

o Codebook-based beam selection where predefined beams are scanned, and the 

one with the strongest received signal is selected. 

o Low complexity and widely used in early mmWave/THz trials. 

o Lacks adaptability to rapid fading and user mobility (Cox et al., 1987; Gaydos 

et al., 2022). 

2. Non-adaptive resource management 

o Equal power allocation across UEs with round-robin scheduling. 

o Provides fairness but cannot adapt to QoS requirements of URLLC vs eMBB 

(Bairagi et al., 2021). 

o Often used as a benchmark in 5G resource allocation studies. 

These baselines reflect conventional approaches that prioritize simplicity over adaptability, 

offering a clear lower bound for evaluating AI-driven strategies. 
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6.2 Performance Comparisons 

Experiments were conducted across diverse channel and deployment scenarios: 

• High-mobility vehicular users (up to 120 km/h) with fast Doppler variations. 

• Dense urban microcells with high blockage probability and severe multipath. 

• Indoor low-SNR scenarios reflecting industrial IoT deployments. 

• Mixed URLLC–eMBB coexistence requiring differentiated service guarantees. 

Results demonstrated consistent superiority of the proposed system: 

• Throughput: Outperformed heuristic beamforming by 25–40% on average. Gains 

were most pronounced in dense multipath conditions due to better interference 

suppression. 

 

Figure 1: Throughput vs. User Load 

• Latency: Maintained <1 ms packet delay under URLLC constraints, reducing latency 

variance by 35% compared to non-adaptive scheduling. 
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Figure 2: Latency CDF 

• Energy efficiency: Improved by 25–30% through dynamic power allocation, 

particularly in scenarios with heterogeneous UE requirements (Xie et al., 2023). 

 

Figure 4: Energy Efficiency vs. User Load 
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• Bit Error Rate (BER): Achieved reductions of up to 20% compared to baselines, 

highlighting robustness to fading and interference. 

 

Figure 5: BER vs. SINR 

6.3 Ablation Studies 

To understand the contribution of each architectural component, we conducted ablation tests: 

• Without Transformer: System performance degraded under high-mobility 

conditions, with throughput reduced by ~18%. This confirmed the importance of 

temporal modeling in capturing fast channel variations. 

• Without GNN: Latency increased significantly in multi-user settings due to 

ineffective interference coordination. 

• RL agent substitution: Replacing PPO with DDPG led to unstable convergence, 

while SAC achieved moderate stability but lower cumulative rewards. 

• Without multimodal fusion: Performance dropped across all metrics, especially in 

blockage-heavy environments, confirming that CSI-only approaches fail to capture 

the richness of real-world dynamics (Barua et al., 2023; Yan et al., 2023). 
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These results reinforce that each module Transformer, GNN, multimodal fusion, and PPO 

provides unique and necessary contributions. 

 

Figure 6: Ablation Study Results 

6.4 Learning Curves and Convergence 

Learning stability was monitored via cumulative reward curves: 

• PPO exhibited smooth and monotonic convergence within 5,000 episodes, reaching 

stable reward levels. 

• DDPG and SAC showed oscillatory learning behavior, with reward spikes followed 

by collapses, highlighting sensitivity to hyperparameters (Samarakoon et al., 2020). 

• Incorporating domain knowledge into reward shaping accelerated convergence by 

~20% and reduced variance between runs (Lavdas et al., 2023). 

The learning dynamics confirm that PPO, combined with multimodal encoding, provides the 

best trade-off between stability and performance. 
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6.5 Visualizations 

Visualization aided interpretation of results and policy behaviors: 

• Throughput–Latency Trade-off Curves: The proposed method consistently 

achieved Pareto-efficient points beyond both baselines, especially in URLLC-

dominant scenarios. 

• Beam Pattern Heatmaps: Showed narrower, interference-resistant beams compared 

to heuristic designs, validating the role of adaptive beam selection (Beuret & Thiran, 

2024). 

• Reward Trend Graphs: Illustrated stable upward trends, demonstrating reduced 

variance across episodes and robustness to stochastic channel effects. 

• Energy Efficiency vs. User Load Plots: Highlighted scalability, showing stable 

energy-per-bit as the number of UEs increased. 

These visualizations not only confirmed numerical improvements but also provided 

qualitative insights into adaptive beam behavior. 

6.6 Statistical Analysis 

To ensure robustness, we applied statistical hypothesis testing across multiple independent 

trials: 

• Paired t-tests confirmed significant improvements in throughput and latency, with 

p < 0.01 

• One-way ANOVA validated energy efficiency differences across baselines, showing 

that the proposed approach consistently outperformed alternatives under varying 

loads. 

• Effect size analysis indicated medium-to-large practical significance for throughput 

and latency improvements, not merely statistical artifacts. 

This comprehensive statistical treatment ensures that observed gains are reliable, 

reproducible, and not due to random chance (Alsabah et al., 2021; Popovski et al., 2019). 

7. Discussion 

The results confirm that reinforcement learning (RL)-based adaptive strategies clearly 

outperform classical heuristics in the management of beamforming and resource allocation. 

Traditional methods such as codebook beamforming and fixed power scheduling rely on 
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static mappings and fail to account for the variability of wireless environments. RL, by 

contrast, continuously interacts with the RF environment, learns temporal and spatial 

dependencies, and updates decisions in real time. This enables the agent to balance 

throughput, latency, and energy efficiency simultaneously, a capability that deterministic 

algorithms cannot achieve (Samarakoon et al., 2020; Lavdas et al., 2023). The use of 

multimodal features beyond CSI, including mobility traces and environmental metadata, 

further strengthens adaptability, ensuring more robust performance in dynamic 6G contexts 

such as vehicular communications and dense urban deployments (Baltrusaitis et al., 2019; 

Barua et al., 2023). 

The implications for future 6G deployments are substantial. With projected demands of 

terabit-scale throughput and sub-millisecond latency, static solutions will not suffice. AI-

driven beamforming and resource management provide a path to meeting these targets while 

supporting diverse services such as URLLC, eMBB, and massive IoT. In practice, this means 

base stations could autonomously adapt to high-mobility users, interference-heavy 

environments, and service heterogeneity without requiring manual intervention. This aligns 

with the broader vision of 6G networks as AI-native, context-aware platforms capable of 

integrating sensing, communication, and computing into a unified system (You et al., 2021; 

Letaief et al., 2019). 

At the same time, several challenges in computational scalability and environment 

complexity must be acknowledged. Training RL agents over large antenna arrays and multi-

user scenarios demands high computational resources and extended training times, even when 

using synthetic datasets such as DeepMIMO. Real-world deployments will introduce 

additional complexity from hardware non-idealities, correlated fading, and mobility beyond 

what current simulators can fully capture (Alsabah et al., 2021). Furthermore, real-time 

inference at the BS is constrained by strict latency budgets; achieving sub-millisecond 

decision-making requires efficient model compression, hardware acceleration, and low-

overhead integration into baseband processing pipelines (Haque et al., 2024; Xie et al., 2023). 

These challenges suggest several directions for future work. First, distributed and federated 

RL could distribute the computational load across multiple base stations and user devices, 

accelerating training while maintaining privacy (Samarakoon et al., 2020). Second, joint 

sensing-communication optimization should be pursued, leveraging the dual use of RF 

signals for both data transmission and environmental awareness, thereby enriching 

multimodal inputs for adaptive policies (You et al., 2021). Third, exploring hybrid solutions 

that integrate rule-based heuristics with AI-driven models could provide interpretable, 

computationally lighter policies, suitable for scenarios where full RL pipelines may be 
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impractical. Finally, cross-layer designs that integrate physical, MAC, and application-layer 

objectives will be essential for end-to-end optimization in real-world 6G networks. 

In summary, the findings highlight that AI-driven, multimodal RL strategies represent a 

critical step toward fulfilling 6G’s ambitious performance targets. They provide robust, 

adaptive solutions that address the limitations of heuristic approaches while opening 

pathways for future innovation in distributed intelligence, joint optimization, and scalable 

deployment. 

8. Conclusion 

This work proposed an AI-driven framework for adaptive beamforming and resource 

management in 6G wireless networks, addressing the limitations of conventional heuristic 

and static allocation methods. The novelty lies in the integration of multimodal machine 

learning with reinforcement learning (RL) to capture both temporal channel variations and 

spatial user relationships. By leveraging CSI alongside mobility and environmental features, 

the framework enables more resilient decision-making in dynamic RF conditions (Baltrusaitis 

et al., 2019; Barua et al., 2023). 

 

Extensive experiments demonstrated significant performance gains over baseline approaches. 

Throughput increased by up to 40%, latency was consistently maintained below the sub-

millisecond URLLC threshold, and energy efficiency improved through adaptive power 

allocation. Ablation studies confirmed the necessity of each component Transformer, GNN, 

multimodal fusion, and PPO in achieving robust outcomes. These improvements validate the 

ability of RL-based adaptive strategies to outperform deterministic algorithms, particularly in 

high-mobility and interference-prone scenarios (Samarakoon et al., 2020; Xie et al., 2023). 

The findings carry strong implications for AI-native 6G deployments. They demonstrate that 

integrating learning-based optimization directly into RF design can help realize terabit-scale 

connectivity, ultra-reliable communication, and energy-efficient operation at scale. Such 

advances align with international 6G roadmaps that envision networks as self-optimizing, 

context-aware, and intelligence-driven platforms (You et al., 2021; Letaief et al., 2019). 

Overall, this study establishes a foundation for the next generation of ultra-reliable, low-

latency communication systems. By proving the feasibility of AI–RF integration under 

realistic channel models, it highlights a path forward for scalable and adaptive wireless 

infrastructures that will shape the core of future 6G networks. 
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