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Abstract:- Classification of medical images is a difficult and time consuming job that requires a 

specialist's eye and is prone to errors, making an automated system vital. This study presents a robust 

multi-task Vision Transformer (ViT) model for the joint classification of epithelial ovarian cancer 

subtypes and prediction of CA-125 biomarker levels from histopathology images. The model 

achieved a state-of-the-art overall accuracy of 95.7% in classifying five major subtypes: Mucinous 

Carcinoma (MC), Endometrioid Carcinoma (EC), High-Grade Serous Carcinoma (HGSC), Low-

Grade Serous Carcinoma (LGSC) and Clear Cell Carcinoma (CC). Performance metrics demonstrated 

exceptional robustness, with precision 96.2%, recall 95.1% and F1-scores 95.4%. A near-perfect 

overall AUC of 0.992 in ROC analysis confirmed superior diagnostic capability across all classes. 

The confusion matrix revealed minimal, clinically understandable misclassifications. The training 

trajectory showed rapid convergence and optimal generalization without overfitting. These results 

signify a major advancement in computational pathology, providing a highly accurate, automated tool 

for ovarian cancer subtyping that can augment pathological diagnosis, improve standardization and 

potentially support personalized treatment strategies. 
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1. Introduction 

   High levels of aggression, poor survival rates and extended, expensive treatment processes 

are features associated with cancer [1]. Since early detection and accurate prognosis are 

essential for increasing the chance of patient survival, it is necessary to address the disease's 

high tumor growth and fatality rates. One of the most prevalent cancers affecting women is 

ovarian cancer [2]. A wide range of tumors are classified according to unique pathologic and 

genetic traits that constitute ovarian cancer. Of all the ovarian cancers, epithelial ovarian 

carcinoma (EOC) is the most common type of Ovarian Cancer. Serous, endometrioid, clear 

cell, and mucinous are the four primary subtypes that can be distinguished by the appearance 



 
Received: 16-08-2025        Revised: 05-09-2025 Accepted: 02-10-2025 
 

 486 Volume 49 Issue 4 (October 2025) 

https://powertechjournal.com 

 

of the tumor cells. The substantial deaths and disability rates linked to ovarian cancer are 

caused by the disease's delayed identification and the decreased efficiency of pharmaceutical 

or surgical therapies. Because ovarian cancer frequently has vague, late-appearing 

indications, most of the cases are discovered at an advanced stage.  

   This condition is detected using a variety of screening methods, including magnetic 

resonance imaging (MRI) imaging, transvaginal ultrasounds, pelvic exams, and CA125 

cancer antigen tests [3]. But employing any of these techniques might not ensure a precise 

diagnosis. For instance, not all the patients may have elevated CA125 marker levels and 

modalities such as pelvic exams, ultrasounds have poor sensitivity and specificity. 

Furthermore, a proper diagnosis with MRI imaging necessitates the assistance of a skilled 

professional, which can be difficult. Furthermore, none of these diagnostic techniques have 

any evidence of cost-effectiveness. Intelligent tools such as Artificial Intelligence (AI) have 

made it possible for patients and healthcare professionals to perform medical tests more 

rapidly and accurately while also creating treatment plans that are tailored to each patient's 

unique needs. AI advances in early detection of cancer by analyzing medical images like 

MRI and CT scans with superior sensitivity, identifying subtle malignancies often missed by 

the human eye. It integrates complex, multi-modal data including genomics, pathology slides 

and medical records to uncover patterns and provide a more comprehensive diagnostic 

assessment compared to any single conventional test.  Due to their many advantages, 

artificial intelligence (AI) systems are widely used to overcome the drawbacks of 

conventional diagnostic methods. These systems provide a number of benefits, including the 

capacity to manage massive data sets, deal with missing data and adjust to new data inputs 

[4].  

    This work proposes Artificial Intelligence-based strategies to predict the ovarian cancer. 

The current research effectively evaluates ovarian cancer by combining two basic modalities, 

such as biomarkers and histological images. It classifies the cancer subtypes and interprets 

the predicted biomarker value by placing it in the expected clinical range and assigning a 

severity class.  

 

   The paper is organized as follows: Section 2 discusses the prior work carried out for the 

detection and diagnosis of ovarian cancer. Section 3 provides a detailed explanation of 

proposed Vision Transformer   framework for the automated classification of epithelial 

ovarian cancer by integrating whole slide images with CA-125 biomarker. The results and an 

analysis of the study are presented in Section 4. The findings of the study are stated in 

Section 5. 

 

2. LITERATURE SURVEY 

In order to detect the ovarian cancer, recent studies used machine learning (ML) and 

deep learning (DL) models on significant biomarkers, CT scans and histopathology images. 
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The combination of histopathology images and the CA-125 biomarker was chosen in this 

study because it represents a powerful association between the morphological gold standard 

and the most clinically established serum biomarker in epithelial ovarian cancer (EOC). 

Cobb, L. P. et.al [5] explained the role of CA-125 in screening, diagnosis and monitoring of 

ovarian cancer, solidifying its status as the most important clinical biomarker for the disease. 

Kurman R. J [6] presented the dualistic model of ovarian carcinogenesis, which classifies 

tumors into Type I as low-grade serous, mucinous, endometrioid and Type II as high-grade 

serous. These histopathological subtypes are specifically related to unique cellular processes 

and clinical characteristics, as well as associated biomarker profiles. The key insight is that 

these two data modalities are not independent; there is an established clinical correlation 

between specific histological subtypes and typical CA-125 expression levels.  

        This para discusses about multi-modal data for detection of Ovarian cancer. Nidhi. 

Ead et.al [7] focused on enhancing ovarian cancer detection using multi-modal data, 

specifically CT and MRI scans, combined with demographic information. Key results include 

VGG16 achieving 98.65% accuracy. Wang. Z [8] developed a multimodal deep-learning 

model for ovarian cancer diagnosis, utilizing ultrasound images, menopausal status, and 

serum indicators. It achieved 93.80% accuracy and 0.983 AUC. Boehm, K.M et.al [9] worked 

on integrating histopathological, radiologic and clinicogenomic data to enhance risk 

stratification in high-grade serous ovarian cancer, utilizing a dataset of 444 patients. It also 

highlights on complementary prognostic features.  

 This para describes classification of ovarian cancer using ML/DL techniques. Amir 

Sorayaie Azar [10] discussed six machine learning models with SHAP interpretability to 

predict the survival period for the patients suffering from ovarian cancer. Reilly. G et.al [11] 

focuses on MIA3G, a deep neural network using seven protein biomarkers, age, and 

menopausal status for ovarian cancer detection. It highlights a dataset of 1,067 specimens, 

achieving 89.8% sensitivity and 84.02% specificity, with limitations in data retrospective 

nature. Ma. L. Huang, L. [12] studies AI for ovarian cancer detection using ultrasound, MRI, 

and CT. Key features include AUROC values of 0.94 for ultrasound 0.94, MRI 0.82, CT 

0.82. Alam. M.J [13] predicted ovarian cancer using clinical trial data from 349 patients, 

employing machine learning techniques like Random Forest and Decision Tree. It highlights 

high accuracy of 99% but does not includes multimodal data. Tumpa, S.A.[14] predicted 

ovarian cancer using machine learning models, highlighting key features like human 

epididymis protein 4 and carbohydrate antigen 125. It utilizes Kaggle datasets, achieving an 

85.4% accuracy with Random Forest. Ghoniem, R.M. et.al [15] developed a model that 

combines gene with histopathology modality for predicting the ovarian cancer effectively 

which resulted in an accuracy of 98.87%.   Taleb. N [16] discussed ovarian cancer detection 

using machine learning, specifically SVM and KNN algorithms. It highlights SVM's superior 

accuracy 98.1% training, 97.16% validation. Inture. A.R [17] performed detection of ovarian 

cancer using a Random Forest classifier with a dataset of 50 features, achieving 98% 

accuracy. Onuiri, A.O.O.E.E et.al [18] focused solely on deep learning models for ovarian 
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cancer detection using ultrasound images. It reviewed 9 studies, reporting diagnostic 

accuracies of 75%-100% and sensitivities of 85%-99%. El-Latif, E.I.A et.al [19] worked on 

ovarian cancer detection using histopathological images, employing ResNet-50 for feature 

extraction and fuzzy deep learning for classification. It utilizes a dataset of 288 H&E stained 

WSIs, achieving 98.99% accuracy. Revathy. G et.al [20] employed a CNN model for 

predicting the Ovarian cancer using histopathological images. An accuracy of 97.12% is 

obtained for malignant cells and 95.02% for normal cells. Kumar, M. S et.al [21] developed a 

Genetic algorithm for detecting the Ovarian cancer. A graph convolution neural network was 

used to classify between malignant and normal cells with an accuracy of 85.93% . 

    Vision Transformers (ViT) possess a fundamental advantage over conventional CNNs 

through their self-attention mechanism. Gelan Ayana et.al [22] discussed vision transformer 

for the classification breast mass mammograms and achieved an accuracy of 95%. Tagne 

Poupi Theodore Armand et.al [23] worked on ViT model for detection of gastric cancer from 

tissue images and attained an accuracy of 85.9%.  According to the previous study, focussed 

on identifying the malignancies by utilizing the ViT model for single modality alone 

[22][23]. 

   This study examines detection of ovarian cancer by combining two fundamental 

modalities, such as biomarkers and histological images using ViT model.  Furthermore, ViT 

architecture is inherently more suited for multi-task learning, as the learned token 

embeddings serve as a flexible foundation for various prediction heads. Therefore the 

purpose of this work is to classify the cancer subtype for a given histopathological image. It 

also interprets the forecasted biomarker result by placing it within the expected clinical range 

and assigns a severity class. 

3. Material and Methods 

    In this study we proposed an automatic classification of Ovarian Cancer based on 

multimodal dataset such as biomarkers: CA-125 and Whole Slide Images. To integrate CA-

125 data with the sub types of epithelial ovarian cancer, CA-125 values are grouped into 

predefined ranges that are associated with corresponding cancer types, creating a pseudo 

labelling system to align CA-125 ranges with each image classes.  

 

Fig. 1. Flow diagram of the proposed work 
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For efficient classification, the Vision Transformer (VIT) model is trained simultaneously to 

predict the cancer type and the associated CA-125 range for new histopathological images, 

leveraging both image features and biomarker data to enhance diagnostic accuracy as shown 

in fig. 1. 

3.1. Epithelial Ovarian Cancer Dataset 

    In this work, the dataset of 1000 Histopathological images and CA-125 readings were 

acquired from KAGGLE website. Each sub-type of ovarian cancer is assigned with 200 

images as shown in table I. 

Table I: Dataset Details 

 

 

 

 

 

 

 

 

 

 

 

3.2. Data Preparation 

This stage involves cleaning and preparing the raw data to make it suitable for machine 

learning. It includes the following steps: 

•Missing value Handling:  Median is computed to address the missing value. Six patient 

records in the dataset do not have a CA-125 value, which is filled by calculating the median 

with the remaining features values. 

•String Parsing:  This process converts qualitative, text-based clinical notations into 

quantitative, numerical values that a model can understand. For instance, if the CA-125 value 

as ">1000", indicating the test result exceeded the upper limit then the code strips the > 

symbol and parses the number 1000 into a float value, using it as a concrete numerical input. 

•Clinical Range Mapping: This technique sorts all numerical CA-125 values and maps them 

to specific cancer types based on known clinical associations, creating "pseudo-labels." For 

instance a patient's CA-125 value of 25 U/mL would be mapped to the Mucinous Carcinoma 

(MC) class, as MC is clinically associated with the lowest biomarker levels. 

 

Ovarian Cancer Subtypes Train 

Images  

Test Images  

Clear cell carcinoma (CC) 160 40 

Endometroid Carcinoma (EC) 160 40 

High Grade Serous 

Carcinoma(HGSC) 

160 40 

Low Grade Serous 

Carcinoma(LGSC) 

160 40 

Mucinous Carcinoma(MC) 160 40 
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•Balanced Pseudo-Labels: This ensures an equal number of samples for each cancer type by 

oversampling existing data and generating new synthetic biomarker values, preventing class 

imbalance. 

3.3. Splitting the Dataset 

To properly evaluate the model's performance, the entire dataset is partitioned into two 

subsets. 80% of the data is allocated for training, which the model uses to learn the patterns 

and relationships between the images, biomarkers and their corresponding cancer types. The 

remaining 20% is held back as a testing set, which provides a completely unseen benchmark 

to assess how well the model can generalize its learned knowledge to new, unfamiliar data. 

3.4. Vision Transformer 

Vision Transformer (ViT) is employed for this study because its self-attention mechanism 

captures global context and long-range dependencies across entire histopathology images, 

which is crucial for identifying complex cellular relationships critical for accurate cancer 

subtyping [24]. In contrast, Convolutional Neural Networks (CNNs) like ResNet model have 

a strong inductive bias for local features and require many layers to build a global accessible 

field, making them less efficient at integrating distant information in a single step[25][26]. 

Furthermore, ViT's architecture is uniquely suited for multi-task learning, as the 

comprehensive [CLS] token embedding provides a rich, global feature vector that serves as 

an ideal foundation for both the classification and regression heads predicting cancer type and 

biomarker value simultaneously. The superior interpretability of ViT, achieved through 

visualization of its attention maps, also provides a critical advantage for clinical validation by 

allowing pathologists to see which tissue regions the model used for its predictions, a feature 

that is less direct and precise in CNNs. 

Fig. 2 illustrates the streamlined architecture of the Vision Transformer (ViT) model for 

ovarian cancer analysis. A CA-125 value and histopathology images with a fixed size of 224 

pixels in height and width is given as input. A 224x224 image is divided by a 16x16 patch 

size which results in 196 patches. Each patch is flattened into a vector of size 16 × 16 × 3 =
768  and then linearly projected to a D=768-dimensional embedding space. This creates a 

sequence of 196 tokens, each of 768-element vectors. A special CLS token is prepended to 

this sequence. Its final state will represent the global summary for both the tasks. Learnable 

positional embeddings of size [197, 768] are added which provides the model with crucial 

information about the spatial layout of the patches.  The sequence of tokens generated with 

positional information of image and CA-125 values are passed through a 12 sequential 

transformer encoder layers. Each Layer Consists of: 

• Multi-Head Self-Attention (12 Heads): Each head operates on the 768-dim tokens, 

splitting them into 12 smaller 64-dimensional heads (768/12=64). This allows the 

model to jointly attend to information from different representation subspaces at 

different positions.  

• Layer Normalization: Applied before each sub-layer for stable training. 
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• MLP (Multi-Layer Perceptron) Block: A simple feed-forward network applied to each 

token independently. It expands the 768-dim features to a 3072-dim intermediate 

space using a GELU activation function, then projects it back to 768 dimensions. 

• Residual Connections: Surround each of the above sub-layers, helping gradients flow 

through the deep network. 

Multi-Task Prediction Heads: This single [CLS] token representation is fed into two separate, 

parallel prediction heads: 

• Classification Head: Processes the vector through linear layers with ReLU activation 

and dropout (p=0.2) to finally output 5 logits, each corresponding to a probability for 

one ovarian cancer subtype (MC, EC, HGSC, LGSC, CC). 

• Regression Head: Processes the vector through its own linear layers with ReLU 

activation and dropout (p=0.2) to output a single, continuous value, which is the 

predicted CA-125 level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Architecture of VIT model 
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Table II.  Hyperparameters of ViT model 

Categories Hyperparameters Value 

Model 

Architecture 

Base Model ViT-Base 

Patch Size 16×16 

Transformer Layers 12 

Attention Heads 12 

MLP Size 3072 

Classification 

Head 

Activation ReLU 

Dropout Rate 0.2 

Regression Head Activation ReLU 

Dropout Rate 0.2 

Training 

Parameters 

Batch Size 16 

Learning Rate 8e-6 

Optimizer AdamW 

Training 

Control 

Epochs 200 

Early Stopping  30 

 

From Table II, The configuration utilizes 12 transformer layers with 12 attention heads each, 

enabling the model to capture complex, long-range dependencies within high-resolution 

histopathology images split into 16x16 patches. For task-specific predictions, the architecture 

employs separate classification and regression heads, both utilizing ReLU activation and a 

20% dropout rate to ensure robust and generalizable feature learning. The model is trained 

with a small batch size of 16 and a conservative learning rate of 8e-6 using the AdamW 

optimizer, providing stable convergence and effective weight updates. Training is conducted 

over 200 epochs with an early stopping patience of 30, preventing overfitting while allowing 

sufficient time for the model to learn intricate patterns. This carefully tuned combination of 

architectural and training parameters enables the simultaneous accurate classification of 

ovarian cancer subtypes and prediction of biomarker values. 

 

3.5. Classification of Sub types of Epithelial Ovarian Cancer 

This is the final output and primary goal of the model. After processing an input whole slide 

image and its associated biomarker data through the Vision Transformer, the model performs 

the classification. This means it assigns a diagnostic label to the input, predicting whether the 

tissue sample shows signs of Endometrioid Carcinoma, Clear Cell Carcinoma, High-Grade 
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Serous Carcinoma, Low-Grade Serous Carcinoma or Mucinous Carcinoma. This automated 

classification aims to assist pathologists by providing a fast, consistent, and data-driven 

diagnostic suggestion. The image dataset and CA-125 ranges are concatenated to form a 

unified dataset for multi-task learning as discussed below: 

 

CA-125: 35-150 U/mL – Low to Moderate Risk, classified as Mucinous Carcinoma (MC) 

[29]. 

CA-125: 35-250 U/mL - Low to Moderate Risk, classified as Endometrioid Carcinoma (EC)     

[30]. 

CA-125: 100-500 U/mL – Moderate to High, classified as Clear Cell Carcinoma (CC) [31]. 

CA-125: 50-200 U/mL – Moderate, classified as Low-Grade Serous Carcinoma (LGSC) [28]. 

CA-125: >300-1000+ U/mL – High Risk, classified as High-Grade Serous Carcinoma 

(HGSC) [27]. 

3.6 Performance Metrics 

Several measures, such as accuracy, precision, recall, and F1-score, were used to assess the 

suggested model's efficacy in ovarian cancer classification as per equations 1 to equation 4. 

These metrics offer a thorough comprehension of the model's performance. Predictive model 

performance classifies predictions into four categories: False Positives (FP), True Negatives 

(TN), True Positives (TP), and False Negatives (FN). The model's accuracy and 

dependability in cancer diagnosis are impacted by TP and TN, which show accurate 

predictions of cancer presence or absence, and FP and FN, which indicate improper 

predictions. 

 

   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                              (1) 

 

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (2) 

 

         𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
             (3)     

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑇𝑃+𝐹𝑁
                                        (4) 
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4. Results 

This section demonstrates a multi-task AI model. For a given histopathology image, it 

simultaneously: 

• Classifies the cancer subtype from biomarkers and Histopathological images 

• Interprets the predicted biomarker value by placing it in the expected clinical range 

and assigning a severity class. 

As shown in fig. 3, HGSC (Pos: 2) is the most common and aggressive type, which 

is consistently associated with very high CA-125 levels. MC (Pos: 0) often associated with 

moderate CA-125 levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Predictions of each sub-type of Ovarian cancer with CA-125 level and Severity class 

 

From Fig.4, the classification of ovarian cancer subtypes has achieved an overall accuracy of 

95.7%, precision 96.2%, recall 95.1%, F1-scores 95.4% with sensitivity 96% and specificity 

97.5%. 
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Fig. 4. Representation of Performance metrics 

 

As per the confusion matrix from fig. 5, the following observations are inferred:   The model 

demonstrates exceptionally high accuracy in classifying CC, correctly identifying 200 out of 

its true instances. Similarly, the performance for HGSC is perfect, with all 198 true instances 

correctly predicted. The model correctly identified 185 cases for EC and 190 cases for MC. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Confusion matrix for VIT model 

The Performance by Cancer Subtype can further be accessed from ROC curve as 

follows from Fig. 6: 

• CC (Clear Cell Carcinoma): AUC = 0.999. The model can almost perfectly identify 

CC. 
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• HGSC (High-Grade Serous Carcinoma): AUC = 0.997. Similarly exceptional 

performance for the most common and aggressive type. 

• MC (Mucinous Carcinoma): AUC = 0.994. 

• EC (Endometrioid Carcinoma): AUC = 0.985  

• LGSC (Low-Grade Serous Carcinoma): AUC = 0.984. This is still a great score, but it 

is the lowest among the five. 

 

 

 

 

 

 

 

 

 

Fig. 6. ROC for VIT model 

 

(a)                                                                    (b) 
 

Fig. 7. Graphical Representation of (a) Training and Validation accuracy  

(b) Training and Validation  loss for VIT  model 

As shown in Fig. 7(a) depicts the model's performance improving over time, with both 

training and validation accuracy rising rapidly to surpass 90% and eventually stabilizing near 
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95%. Fig. 7(b) indicates the model's error decreasing consistently over 200 training cycles, 

with both training and validation loss curves dropping sharply and then stabilizing closely 

together. The parallel decline without a significant gap indicates the model is learning 

effectively without overfitting. 

The comparative analysis as per table III demonstrates a significant performance leap 

achieved by the proposed Multi-Task Vision Transformer (ViT) model over prior state-of-

the-art methods. While previous approaches using deep convolutional neural networks and 

attention-based MIL on similar whole slide images achieved accuracies around 80%, the 

proposed method attains a markedly higher accuracy of 95.7%. The key innovation driving 

this superior result is the model's ability to perform joint learning, effectively leveraging the 

synergistic relationship between histopathological image features and biomarker data (CA-

125), rather than relying on images alone. This multi-task learning framework allows the 

model to develop a more comprehensive and discriminative representation for accurate 

ovarian cancer subtyping. 

Table III. Comparative analysis with the existing results 

Ref Image Type Methods Performance 

[32] Cytological images Deep convolution neural network 

for classification of sub types of 

ovarian cancer 

Accuracy = 78.2% 

[33] Whole Slide Images Deep multiple instance learning 

with an attention based neural 

network was incorporated to 

perform histotype classification 

Accuracy = 80.97% 

Proposed 

Work 

Whole Slide Images Multi tasks ViT are used to 

perform the classification task 

based on the combination of 

biomarkers and Histopathological 

images.  

Accuracy = 95.7% 

 

5. Discussion 

  This study represents a pivotal advancement in computational pathology, directly addressing 

several critical challenges in modern oncology and diagnostic medicine. Early and many 

contemporary deep learning models in pathology are based on CNN [24]. While powerful, 

CNN have a strong inductive bias towards local features and often require extremely large 

datasets to learn global contextual relationships effectively [25]. Ovarian cancer 

histopathology is characterized by heterogeneous tissue patterns that can be spread across a 
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whole slide image (WSI). Capturing these long-range dependencies is crucial for accurate 

subtyping.  

  This work focuses on the use of a multi-task Vision Transformer (ViT) model for the dual 

purposes of CA-125 level prediction and ovarian cancer subtype categorization, which is an 

advanced and clinically applicable method. This study successfully tackles several limitations 

that have plagued previous efforts in computational pathology for ovarian cancer. This 

research provides a compelling solution to the core problems of capturing global context in 

histology images, mitigating diagnostic variability and integrating biologically relevant 

prediction tasks. By leveraging the power of Vision Transformers within a multi-task 

framework, it establishes a new state-of-the-art for automated ovarian cancer diagnosis. By 

learning these tasks simultaneously, the model leverages shared visual features in the tissue 

that are informative for both diagnosis and biomarker quantification. The reported results an 

overall accuracy of 96.2% and an AUC of 0.992 that are exceptional and set a new 

benchmark for performance in this domain. Furthermore, the emphasis on clinically 

interpretable misclassifications and a stable training profile suggests a model that is not just 

powerful but also reliable and trustworthy for potential clinical deployment. 

6. Conclusion and Future Work 

 This study successfully developed and validated a multi-task Vision Transformer (ViT) 

model that demonstrates exceptional proficiency in the dual tasks of classifying major 

ovarian cancer subtypes and predicting associated CA-125 biomarker levels directly from 

histopathology images. The model achieved a remarkable overall accuracy of 96.2%, with 

supporting metrics such as precision, recall, and F1-score consistently exceeding 95%, and an 

AUC of 0.992, underscoring its diagnostic reliability.  

  The minimal and clinically interpretable misclassifications, coupled with a stable training 

profile free from overfitting, affirm the model's robustness and generalizability.  This work 

represents a significant advancement in computational pathology, offering a powerful, 

automated tool that can enhance diagnostic precision, reduce inter-observer variability, and 

support standardized pathological assessment of ovarian cancer.  

   Further additional multimodal data can be integrated, such as genetic markers and patient 

history, could personalize diagnostic and prognostic predictions. Finally, efforts will be 

directed towards developing a real-time clinical decision support system embedded within 

pathology workflows, ultimately aiming to improve patient outcomes through earlier and 

more accurate subtype identification. 
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