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Abstract:- Classification of medical images is a difficult and time consuming job that requires a
specialist's eye and is prone to errors, making an automated system vital. This study presents a robust
multi-task Vision Transformer (ViT) model for the joint classification of epithelial ovarian cancer
subtypes and prediction of CA-125 biomarker levels from histopathology images. The model
achieved a state-of-the-art overall accuracy of 95.7% in classifying five major subtypes: Mucinous
Carcinoma (MC), Endometrioid Carcinoma (EC), High-Grade Serous Carcinoma (HGSC), Low-
Grade Serous Carcinoma (LGSC) and Clear Cell Carcinoma (CC). Performance metrics demonstrated
exceptional robustness, with precision 96.2%, recall 95.1% and F1-scores 95.4%. A near-perfect
overall AUC of 0.992 in ROC analysis confirmed superior diagnostic capability across all classes.
The confusion matrix revealed minimal, clinically understandable misclassifications. The training
trajectory showed rapid convergence and optimal generalization without overfitting. These results
signify a major advancement in computational pathology, providing a highly accurate, automated tool
for ovarian cancer subtyping that can augment pathological diagnosis, improve standardization and
potentially support personalized treatment strategies.
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1. Introduction

High levels of aggression, poor survival rates and extended, expensive treatment processes
are features associated with cancer [1]. Since early detection and accurate prognosis are
essential for increasing the chance of patient survival, it is necessary to address the disease's
high tumor growth and fatality rates. One of the most prevalent cancers affecting women is
ovarian cancer [2]. A wide range of tumors are classified according to unique pathologic and
genetic traits that constitute ovarian cancer. Of all the ovarian cancers, epithelial ovarian
carcinoma (EOC) is the most common type of Ovarian Cancer. Serous, endometrioid, clear
cell, and mucinous are the four primary subtypes that can be distinguished by the appeara
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of the tumor cells. The substantial deaths and disability rates linked to ovarian cancer are
caused by the disease's delayed identification and the decreased efficiency of pharmaceutical
or surgical therapies. Because ovarian cancer frequently has vague, late-appearing
indications, most of the cases are discovered at an advanced stage.

This condition is detected using a variety of screening methods, including magnetic
resonance imaging (MRI) imaging, transvaginal ultrasounds, pelvic exams, and CA125
cancer antigen tests [3]. But employing any of these techniques might not ensure a precise
diagnosis. For instance, not all the patients may have elevated CA125 marker levels and
modalities such as pelvic exams, ultrasounds have poor sensitivity and specificity.
Furthermore, a proper diagnosis with MRI imaging necessitates the assistance of a skilled
professional, which can be difficult. Furthermore, none of these diagnostic techniques have
any evidence of cost-effectiveness. Intelligent tools such as Artificial Intelligence (Al) have
made it possible for patients and healthcare professionals to perform medical tests more
rapidly and accurately while also creating treatment plans that are tailored to each patient's
unique needs. Al advances in early detection of cancer by analyzing medical images like
MRI and CT scans with superior sensitivity, identifying subtle malignancies often missed by
the human eye. It integrates complex, multi-modal data including genomics, pathology slides
and medical records to uncover patterns and provide a more comprehensive diagnostic
assessment compared to any single conventional test. Due to their many advantages,
artificial intelligence (AI) systems are widely used to overcome the drawbacks of
conventional diagnostic methods. These systems provide a number of benefits, including the
capacity to manage massive data sets, deal with missing data and adjust to new data inputs

[4].

This work proposes Artificial Intelligence-based strategies to predict the ovarian cancer.
The current research effectively evaluates ovarian cancer by combining two basic modalities,
such as biomarkers and histological images. It classifies the cancer subtypes and interprets
the predicted biomarker value by placing it in the expected clinical range and assigning a
severity class.

The paper is organized as follows: Section 2 discusses the prior work carried out for the
detection and diagnosis of ovarian cancer. Section 3 provides a detailed explanation of
proposed Vision Transformer  framework for the automated classification of epithelial
ovarian cancer by integrating whole slide images with CA-125 biomarker. The results and an
analysis of the study are presented in Section 4. The findings of the study are stated in
Section 5.

2. LITERATURE SURVEY

In order to detect the ovarian cancer, recent studies used machine learning (ML) and
deep learning (DL) models on significant biomarkers, CT scans and histopathology images.
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The combination of histopathology images and the CA-125 biomarker was chosen in this
study because it represents a powerful association between the morphological gold standard
and the most clinically established serum biomarker in epithelial ovarian cancer (EOC).
Cobb, L. P. et.al [5] explained the role of CA-125 in screening, diagnosis and monitoring of
ovarian cancer, solidifying its status as the most important clinical biomarker for the disease.
Kurman R. J [6] presented the dualistic model of ovarian carcinogenesis, which classifies
tumors into Type I as low-grade serous, mucinous, endometrioid and Type II as high-grade
serous. These histopathological subtypes are specifically related to unique cellular processes
and clinical characteristics, as well as associated biomarker profiles. The key insight is that
these two data modalities are not independent; there is an established clinical correlation
between specific histological subtypes and typical CA-125 expression levels.

This para discusses about multi-modal data for detection of Ovarian cancer. Nidhi.
Ead et.al [7] focused on enhancing ovarian cancer detection using multi-modal data,
specifically CT and MRI scans, combined with demographic information. Key results include
VGGI16 achieving 98.65% accuracy. Wang. Z [8] developed a multimodal deep-learning
model for ovarian cancer diagnosis, utilizing ultrasound images, menopausal status, and
serum indicators. It achieved 93.80% accuracy and 0.983 AUC. Boehm, K.M et.al [9] worked
on integrating histopathological, radiologic and clinicogenomic data to enhance risk
stratification in high-grade serous ovarian cancer, utilizing a dataset of 444 patients. It also
highlights on complementary prognostic features.

This para describes classification of ovarian cancer using ML/DL techniques. Amir
Sorayaie Azar [10] discussed six machine learning models with SHAP interpretability to
predict the survival period for the patients suffering from ovarian cancer. Reilly. G et.al [11]
focuses on MIA3G, a deep neural network using seven protein biomarkers, age, and
menopausal status for ovarian cancer detection. It highlights a dataset of 1,067 specimens,
achieving 89.8% sensitivity and 84.02% specificity, with limitations in data retrospective
nature. Ma. L. Huang, L. [12] studies Al for ovarian cancer detection using ultrasound, MRI,
and CT. Key features include AUROC values of 0.94 for ultrasound 0.94, MRI 0.82, CT
0.82. Alam. M.J [13] predicted ovarian cancer using clinical trial data from 349 patients,
employing machine learning techniques like Random Forest and Decision Tree. It highlights
high accuracy of 99% but does not includes multimodal data. Tumpa, S.A.[14] predicted
ovarian cancer using machine learning models, highlighting key features like human
epididymis protein 4 and carbohydrate antigen 125. It utilizes Kaggle datasets, achieving an
85.4% accuracy with Random Forest. Ghoniem, R.M. et.al [15] developed a model that
combines gene with histopathology modality for predicting the ovarian cancer effectively
which resulted in an accuracy of 98.87%. Taleb. N [16] discussed ovarian cancer detection
using machine learning, specifically SVM and KNN algorithms. It highlights SVM's superior
accuracy 98.1% training, 97.16% validation. Inture. A.R [17] performed detection of ovarian
cancer using a Random Forest classifier with a dataset of 50 features, achieving 98%
accuracy. Onuiri, A.O.O.E.E et.al [18] focused solely on deep learning models for ovarian

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com



-\ Power System Technology

/Y~ ISSN:1000-3673

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 02-10-2025

cancer detection using ultrasound images. It reviewed 9 studies, reporting diagnostic
accuracies of 75%-100% and sensitivities of 85%-99%. El-Latif, E.I.A et.al [19] worked on
ovarian cancer detection using histopathological images, employing ResNet-50 for feature
extraction and fuzzy deep learning for classification. It utilizes a dataset of 288 H&E stained
WSIs, achieving 98.99% accuracy. Revathy. G et.al [20] employed a CNN model for
predicting the Ovarian cancer using histopathological images. An accuracy of 97.12% is
obtained for malignant cells and 95.02% for normal cells. Kumar, M. S et.al [21] developed a
Genetic algorithm for detecting the Ovarian cancer. A graph convolution neural network was
used to classify between malignant and normal cells with an accuracy of 85.93% .

Vision Transformers (ViT) possess a fundamental advantage over conventional CNNs
through their self-attention mechanism. Gelan Ayana et.al [22] discussed vision transformer
for the classification breast mass mammograms and achieved an accuracy of 95%. Tagne
Poupi Theodore Armand et.al [23] worked on ViT model for detection of gastric cancer from
tissue images and attained an accuracy of 85.9%. According to the previous study, focussed
on identifying the malignancies by utilizing the ViT model for single modality alone
[22][23].

This study examines detection of ovarian cancer by combining two fundamental
modalities, such as biomarkers and histological images using ViT model. Furthermore, ViT
architecture is inherently more suited for multi-task learning, as the learned token
embeddings serve as a flexible foundation for various prediction heads. Therefore the
purpose of this work is to classify the cancer subtype for a given histopathological image. It
also interprets the forecasted biomarker result by placing it within the expected clinical range
and assigns a severity class.

3. Material and Methods

In this study we proposed an automatic classification of Ovarian Cancer based on
multimodal dataset such as biomarkers: CA-125 and Whole Slide Images. To integrate CA-
125 data with the sub types of epithelial ovarian cancer, CA-125 values are grouped into
predefined ranges that are associated with corresponding cancer types, creating a pseudo
labelling system to align CA-125 ranges with each image classes.

Epithelial Ovarian
€ D
n Vision Classification
I T E—rT— I 9' Pre-Processing H &rl‘iﬂng the |9 = sl —>
l Whote Stide Images I
80% Train ing
20% Testing

Fig. 1. Flow diagram of the proposed work
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For efficient classification, the Vision Transformer (VIT) model is trained simultaneously to
predict the cancer type and the associated CA-125 range for new histopathological images,
leveraging both image features and biomarker data to enhance diagnostic accuracy as shown
in fig. 1.

3.1. Epithelial Ovarian Cancer Dataset

In this work, the dataset of 1000 Histopathological images and CA-125 readings were
acquired from KAGGLE website. Each sub-type of ovarian cancer is assigned with 200
images as shown in table I.

Table I: Dataset Details

Ovarian Cancer Subtypes Train Test Images
Images

Clear cell carcinoma (CC) 160 40
Endometroid Carcinoma (EC) 160 40

High Grade Serous 160 40
Carcinoma(HGSC)

Low Grade Serous 160 40
Carcinoma(LGSC)

Mucinous Carcinoma(MC) 160 40

3.2. Data Preparation

This stage involves cleaning and preparing the raw data to make it suitable for machine
learning. It includes the following steps:

*Missing value Handling: Median is computed to address the missing value. Six patient
records in the dataset do not have a CA-125 value, which is filled by calculating the median
with the remaining features values.

*String Parsing: This process converts qualitative, text-based clinical notations into
quantitative, numerical values that a model can understand. For instance, if the CA-125 value
as ">1000", indicating the test result exceeded the upper limit then the code strips the >
symbol and parses the number 1000 into a float value, using it as a concrete numerical input.

*Clinical Range Mapping: This technique sorts all numerical CA-125 values and maps them
to specific cancer types based on known clinical associations, creating "pseudo-labels." For
instance a patient's CA-125 value of 25 U/mL would be mapped to the Mucinous Carcinoma
(MC) class, as MC is clinically associated with the lowest biomarker levels.
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*Balanced Pseudo-Labels: This ensures an equal number of samples for each cancer type by
oversampling existing data and generating new synthetic biomarker values, preventing class
imbalance.

3.3. Splitting the Dataset

To properly evaluate the model's performance, the entire dataset is partitioned into two
subsets. 80% of the data is allocated for training, which the model uses to learn the patterns
and relationships between the images, biomarkers and their corresponding cancer types. The
remaining 20% is held back as a testing set, which provides a completely unseen benchmark
to assess how well the model can generalize its learned knowledge to new, unfamiliar data.

3.4. Vision Transformer

Vision Transformer (ViT) is employed for this study because its self-attention mechanism
captures global context and long-range dependencies across entire histopathology images,
which is crucial for identifying complex cellular relationships critical for accurate cancer
subtyping [24]. In contrast, Convolutional Neural Networks (CNNs) like ResNet model have
a strong inductive bias for local features and require many layers to build a global accessible
field, making them less efficient at integrating distant information in a single step[25][26].
Furthermore, ViT's architecture is uniquely suited for multi-task learning, as the
comprehensive [CLS] token embedding provides a rich, global feature vector that serves as
an ideal foundation for both the classification and regression heads predicting cancer type and
biomarker value simultaneously. The superior interpretability of ViT, achieved through
visualization of its attention maps, also provides a critical advantage for clinical validation by
allowing pathologists to see which tissue regions the model used for its predictions, a feature
that is less direct and precise in CNNSs.

Fig. 2 illustrates the streamlined architecture of the Vision Transformer (ViT) model for
ovarian cancer analysis. A CA-125 value and histopathology images with a fixed size of 224
pixels in height and width is given as input. A 224x224 image is divided by a 16x16 patch
size which results in 196 patches. Each patch is flattened into a vector of size 16 X 16 X 3 =
768 and then linearly projected to a D=768-dimensional embedding space. This creates a
sequence of 196 tokens, each of 768-element vectors. A special CLS token is prepended to
this sequence. Its final state will represent the global summary for both the tasks. Learnable
positional embeddings of size [197, 768] are added which provides the model with crucial
information about the spatial layout of the patches. The sequence of tokens generated with
positional information of image and CA-125 values are passed througha 12 sequential
transformer encoder layers. Each Layer Consists of:

e Multi-Head Self-Attention (12 Heads): Each head operates on the 768-dim tokens,
splitting them into 12 smaller 64-dimensional heads (768/12=64). This allows the
model to jointly attend to information from different representation subspaces at
different positions.

e Layer Normalization: Applied before each sub-layer for stable training.
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e MLP (Multi-Layer Perceptron) Block: A simple feed-forward network applied to each
token independently. It expands the 768-dim features to a 3072-dim intermediate
space using a GELU activation function, then projects it back to 768 dimensions.

e Residual Connections: Surround each of the above sub-layers, helping gradients flow
through the deep network.

Multi-Task Prediction Heads: This single [CLS] token representation is fed into two separate,
parallel prediction heads:

e Classification Head: Processes the vector through linear layers with ReLU activation
and dropout (p=0.2) to finally output 5 logits, each corresponding to a probability for
one ovarian cancer subtype (MC, EC, HGSC, LGSC, CC).

e Regression Head: Processes the vector through its own linear layers with ReLU
activation and dropout (p=0.2) to output a single, continuous value, which is the
predicted CA-125 level.
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Fig. 2. Architecture of VIT model
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Categories Hyperparameters Value
Model Base Model ViT-Base
Architecture "5 ¢ b Size 1616
Transformer Layers 12
Attention Heads 12
MLP Size 3072
Classification Activation ReLU
Head Dropout Rate 0.2
Regression Head | Activation ReLU
Dropout Rate 0.2
Training Batch Size 16
Parameters Learning Rate 8e-6
Optimizer AdamW
Training Epochs 200
Control Early Stopping 30

From Table II, The configuration utilizes 12 transformer layers with 12 attention heads each,
enabling the model to capture complex, long-range dependencies within high-resolution
histopathology images split into 16x16 patches. For task-specific predictions, the architecture
employs separate classification and regression heads, both utilizing ReLU activation and a
20% dropout rate to ensure robust and generalizable feature learning. The model is trained
with a small batch size of 16 and a conservative learning rate of 8e-6 using the AdamW
optimizer, providing stable convergence and effective weight updates. Training is conducted
over 200 epochs with an early stopping patience of 30, preventing overfitting while allowing
sufficient time for the model to learn intricate patterns. This carefully tuned combination of
architectural and training parameters enables the simultaneous accurate classification of
ovarian cancer subtypes and prediction of biomarker values.

3.5. Classification of Sub types of Epithelial Ovarian Cancer

This is the final output and primary goal of the model. After processing an input whole slide
image and its associated biomarker data through the Vision Transformer, the model performs
the classification. This means it assigns a diagnostic label to the input, predicting whether th
tissue sample shows signs of Endometrioid Carcinoma, Clear Cell Carcinoma, High-Gr;
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Serous Carcinoma, Low-Grade Serous Carcinoma or Mucinous Carcinoma. This automated
classification aims to assist pathologists by providing a fast, consistent, and data-driven
diagnostic suggestion. The image dataset and CA-125 ranges are concatenated to form a
unified dataset for multi-task learning as discussed below:

CA-125: 35-150 U/mL — Low to Moderate Risk, classified as Mucinous Carcinoma (MC)
[29].

CA-125: 35-250 U/mL - Low to Moderate Risk, classified as Endometrioid Carcinoma (EC)
[30].

CA-125: 100-500 U/mL — Moderate to High, classified as Clear Cell Carcinoma (CC) [31].
CA-125: 50-200 U/mL — Moderate, classified as Low-Grade Serous Carcinoma (LGSC) [28].

CA-125: >300-1000+ U/mL — High Risk, classified as High-Grade Serous Carcinoma
(HGSC) [27].

3.6 Performance Metrics

Several measures, such as accuracy, precision, recall, and F1-score, were used to assess the
suggested model's efficacy in ovarian cancer classification as per equations 1 to equation 4.
These metrics offer a thorough comprehension of the model's performance. Predictive model
performance classifies predictions into four categories: False Positives (FP), True Negatives
(TN), True Positives (TP), and False Negatives (FN). The model's accuracy and
dependability in cancer diagnosis are impacted by TP and TN, which show accurate
predictions of cancer presence or absence, and FP and FN, which indicate improper

predictions.
TP+TN
Accuracy = —————— (D
TP+TN+FP+FN
- TP
Precision = (2)
TP+FP
TP
Recall = 3)
TP+FN
2XRecallxPrecision
F1 —score = (4)

TP+FN

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com




~ Power System Technology

’\ ISSN:1000-3673

B of

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 02-10-2025

4. Results

This section demonstrates a multi-task Al model. For a given histopathology image, it
simultaneously:

o (lassifies the cancer subtype from biomarkers and Histopathological images

o Interprets the predicted biomarker value by placing it in the expected clinical range
and assigning a severity class.

As shown in fig. 3, HGSC (Pos: 2) is the most common and aggressive type, which
is consistently associated with very high CA-125 levels. MC (Pos: 0) often associated with
moderate CA-125 levels.

Cancer Type: HGSC (Pos: 2)

Cancer Type: MC (Pos: 0) Cancer Type: EC (Pos: 1) 5
CA-125: 49.75 U/mL CA-125: 80.29 U/mL R:nA ;-233?;%333’@%&
Range: 35-150 U/mL Range: 30-250 U/mL Sg = ty Cl : High
Severity Class: Low to Moderate Severity Class: Low to Moderate eventy Class: Hig

Cancer Type: LGSC (Pos: 3)
CA-125: 59.78 U/mL
Range: 50-200 U/mL

Severity Class: Moderate Cancer Type: CC (Pos: 4)

CA-125: 105.92 u/mL

5 o T Range: 100-500 U/mL
. ] Ny Severity Class: Moderate High
- . 5 ¥
R o
L1 o ~ bl )
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Fig. 3. Predictions of each sub-type of Ovarian cancer with CA-125 level and Severity class

From Fig.4, the classification of ovarian cancer subtypes has achieved an overall accuracy of
95.7%, precision 96.2%, recall 95.1%, F1-scores 95.4% with sensitivity 96% and specificity
97.5%.
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Fig. 4. Representation of Performance metrics

As per the confusion matrix from fig. 5, the following observations are inferred: The model
demonstrates exceptionally high accuracy in classifying CC, correctly identifying 200 out of
its true instances. Similarly, the performance for HGSC is perfect, with all 198 true instances
correctly predicted. The model correctly identified 185 cases for EC and 190 cases for MC.

200

True Label

HGSC

LGSC

cC
'

MC EC HGSC LGSC cc

Predicted Label

Fig. 5 Confusion matrix for VIT model

The Performance by Cancer Subtype can further be accessed from ROC curve as

follows from Fig. 6:

e CC (Clear Cell Carcinoma): AUC = 0.999. The model can almost perfectly identify
CC.
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e HGSC (High-Grade Serous Carcinoma): AUC = 0.997. Similarly exceptional
performance for the most common and aggressive type.

e MC (Mucinous Carcinoma): AUC = 0.994.
e EC (Endometrioid Carcinoma): AUC = 0.985

e LGSC (Low-Grade Serous Carcinoma): AUC = 0.984. This is still a great score, but it
is the lowest among the five.

Overall AUC: 0.992

10 4z
f.r_p— -
-~

{ -

°
°

True Positive Rate
°
Y
\
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Fig. 6. ROC for VIT model
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Fig. 7. Graphical Representation of (a) Training and Validation accuracy
(b) Training and Validation loss for VIT model
As shown in Fig. 7(a) depicts the model's performance improving over time, with both

training and validation accuracy rising rapidly to surpass 90% and eventually stabilizing near
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95%. Fig. 7(b) indicates the model's error decreasing consistently over 200 training cycles,
with both training and validation loss curves dropping sharply and then stabilizing closely
together. The parallel decline without a significant gap indicates the model is learning
effectively without overfitting.

The comparative analysis as per table III demonstrates a significant performance leap
achieved by the proposed Multi-Task Vision Transformer (ViT) model over prior state-of-
the-art methods. While previous approaches using deep convolutional neural networks and
attention-based MIL on similar whole slide images achieved accuracies around 80%, the
proposed method attains a markedly higher accuracy of 95.7%. The key innovation driving
this superior result is the model's ability to perform joint learning, effectively leveraging the
synergistic relationship between histopathological image features and biomarker data (CA-
125), rather than relying on images alone. This multi-task learning framework allows the
model to develop a more comprehensive and discriminative representation for accurate
ovarian cancer subtyping.

Table I1I. Comparative analysis with the existing results

Ref Image Type Methods Performance

[32] Cytological images | Deep convolution neural network | Accuracy = 78.2%
for classification of sub types of
ovarian cancer

[33] Whole Slide Images | Deep multiple instance learning | Accuracy = 80.97%
with an attention based neural
network was incorporated to
perform histotype classification

Proposed | Whole Slide Images | Multi tasks ViT are used to | Accuracy =95.7%
Work perform the classification task
based on the combination of
biomarkers and Histopathological
images.

5. Discussion

This study represents a pivotal advancement in computational pathology, directly addressing
several critical challenges in modern oncology and diagnostic medicine. Early and many
contemporary deep learning models in pathology are based on CNN [24]. While powerful,
CNN have a strong inductive bias towards local features and often require extremely large
datasets to learn global contextual relationships effectively [25]. Ovarian cancer
histopathology is characterized by heterogeneous tissue patterns that can be spread across a
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whole slide image (WSI). Capturing these long-range dependencies is crucial for accurate
subtyping.

This work focuses on the use of a multi-task Vision Transformer (ViT) model for the dual
purposes of CA-125 level prediction and ovarian cancer subtype categorization, which is an
advanced and clinically applicable method. This study successfully tackles several limitations
that have plagued previous efforts in computational pathology for ovarian cancer. This
research provides a compelling solution to the core problems of capturing global context in
histology images, mitigating diagnostic variability and integrating biologically relevant
prediction tasks. By leveraging the power of Vision Transformers within a multi-task
framework, it establishes a new state-of-the-art for automated ovarian cancer diagnosis. By
learning these tasks simultaneously, the model leverages shared visual features in the tissue
that are informative for both diagnosis and biomarker quantification. The reported results an
overall accuracy of 96.2% and an AUC o0f0.992 that are exceptional and set a new
benchmark for performance in this domain. Furthermore, the emphasis on clinically
interpretable misclassifications and a stable training profile suggests a model that is not just
powerful but also reliable and trustworthy for potential clinical deployment.

6. Conclusion and Future Work

This study successfully developed and validated a multi-task Vision Transformer (ViT)
model that demonstrates exceptional proficiency in the dual tasks of classifying major
ovarian cancer subtypes and predicting associated CA-125 biomarker levels directly from
histopathology images. The model achieved a remarkable overall accuracy of 96.2%, with
supporting metrics such as precision, recall, and F1-score consistently exceeding 95%, and an
AUC of 0.992, underscoring its diagnostic reliability.

The minimal and clinically interpretable misclassifications, coupled with a stable training
profile free from overfitting, affirm the model's robustness and generalizability. This work
represents a significant advancement in computational pathology, offering a powerful,
automated tool that can enhance diagnostic precision, reduce inter-observer variability, and
support standardized pathological assessment of ovarian cancer.

Further additional multimodal data can be integrated, such as genetic markers and patient
history, could personalize diagnostic and prognostic predictions. Finally, efforts will be
directed towards developing a real-time clinical decision support system embedded within
pathology workflows, ultimately aiming to improve patient outcomes through earlier and
more accurate subtype identification.
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