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Abstract:- With global photovoltaic (PV) capacity surpassing 2 terawatts (TW), solar energy has 

emerged as the most cost-effective power source in many regions. However, ensuring long-term 

reliability and performance remains a critical challenge, particularly due to module degradation 

influenced by environmental factors. This study investigates the degradation behavior of a 10-panel PV 

array over a three-year period using high-resolution environmental and electrical datasets. A multistep 

methodology comprising data preprocessing, power normalization to standard test conditions (STC), 

and annual aggregation was applied to assess performance metrics. The degradation rate was estimated 

using both linear regression and a multivariate model incorporating environmental variables such as 

relative humidity, ambient temperature, wind speed, global irradiance, and albedo. Results indicate an 

annual degradation rate consistent with literature values for polycrystalline silicon modules (0.5–1% 

per year), with temperature and humidity emerging as key accelerators of performance decline. The 

multivariate model demonstrated strong predictive accuracy, closely matching actual degradation 

trends. These findings highlight the significant impact of environmental stressors on PV system 

performance and underscore the importance of site-specific analysis for accurate forecasting. The 

economic analysis also emphasizes how degradation, discount rate, and system lifetime strongly affect 

the economic and environmental performance of grid-connected PV systems. 
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1. Introduction 

The global photovoltaic (PV) capacity has surpassed 2 terawatts (TW) [1]. This rapid 

expansion has led to substantial cost reductions, positioning solar energy as the most affordable 

power source in many regions. The 2 TW capacity is equivalent to the combined installed 

electricity capacity of India, the United States, and the United Kingdom, and could theoretically 
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power approximately one billion homes, assuming a 20% capacity factor and average 

consumption of 3.5 MWh per year [2]. The environmental benefits of solar energy, primarily 

stemming from the displacement of fossil fuel-based electricity generation, are intrinsically 

linked to the lifespan and performance of PV systems. Studies have shown that decreased PV 

panel efficiency due to degradation can lead to an increased lifecycle carbon footprint, 

potentially undermining the intended environmental gains. Furthermore, the economic viability 

of solar projects is heavily dependent on sustained energy production, with degradation directly 

impacting the levelized cost of energy (LCOE) and overall investment returns [3],[4],[5]. 

Therefore, a comprehensive understanding of the factors driving PV panel degradation, along 

with a rigorous economic assessment, is essential for optimizing system design, operation, and 

maintenance strategies. 

As the demand for clean and sustainable energy continues to grow, ensuring the long-term 

reliability and durability of PV systems has become a critical area of research. The degradation 

rate of PV modules plays a vital role in determining the efficiency, reliability, and economic 

feasibility of solar energy systems. The mitigation of these degradation rates is essential for 

optimizing the lifespan and performance of PV installations [6],[7]. Multivariate linear 

regression is used in this study because it offers a more realistic and complete analysis. It can 

model how multiple variables simultaneously affect an outcome, unlike simpler models that 

only consider one factor. This approach provides a better fit for the data, giving a more accurate 

picture by controlling for confounding variables [8]. 

This paper delves into the environmental impact of solar PV panel degradation, combining 

detailed analysis of degradation mechanisms with a comprehensive economic evaluation. In 

this study, the quantification of  the effects of key environmental factors on degradation rates 

and the assessment of the resulting economic consequences,  can help to provide stakeholders 

with the knowledge needed to make informed decisions that balance environmental 

sustainability and economic viability in solar energy investments. We explore the current state 

of research on degradation and its impact and will propose suitable strategies for maximizing 

the performance and financial returns of this form of renewable energy. 

2. METHODOLOGY 

This study estimates the degradation of a 10-panel photovoltaic (PV) array using 12-month 

datasets from different years. The available data includes timestamp, radiation components 

(direct, normal, horizontal, global), DC voltage, DC current, ambient temperature, wind speed 

and albedo. 

A.   Data Preprocessing 

Data preprocessing is a crucial step in ensuring accurate and reliable analysis of photovoltaic 

(PV) panel performance. The first step involves calculating the output of each individual panel 

by dividing the total power generated by the PV array by the number of panels which are ten 

in our case. This provides insight into the contribution of each panel to the overall energy 

production. Next, the dataset must be cleaned to remove any missing values or faulty readings, 
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which may result from sensor errors or external environmental conditions. Eliminating these 

anomalies is essential to prevent skewed results and ensure analytical accuracy. Finally, all 

timestamps must be checked for consistency and correct formatting. Uniform timestamps are 

vital for accurate time-based analysis, enabling the detection of performance trends and 

patterns. By following these preprocessing steps, the dataset becomes well-structured and 

reliable, laying the groundwork for a comprehensive assessment of PV panel performance over 

time. 

• Calculation of Metrics Per Timestamp 

For each data point, we calculate the DC power as follow:  

dc dc dcP V * I=                                                                                         

(1) 
The power must be normalized to Standard Test Condition (STC): 

norm dc globalP ( P / G )* 1000=                                         (2) 

Make the power correction according to the temperature using the following relationship: 

corrected norm modP P (T 25 )= + −  (3) 

Estimate the temperature of the module ( if unavailable) by the following relationship: 

mod ambient globalT T (( NOCT 20 ) / 800 )* G= + −         (4)

 
Where the nominal operating cell temperature (NOCT) is defined as the solar panel 

temperature based on four main standard reference environments: Irradiation on the solar panel 

is equal to 800W/m2, the wind velocity is of 1 m/s and the air temperature is equal to 20°C. 

Gglobal  is the global irradiance, Tmod is the temperature of the module. 

B.   Annual Aggergation 

     The annual aggregation process begins by filtering the dataset by calendar year, followed by 

computing either monthly or daily averages, as required. To ensure consistency and 

comparability of performance metrics, data is further refined to include only clear-sky or near-

standard test condition (STC) days, defined as periods when solar irradiance (G) exceeds 700 

W/m². Subsequently, the mean or median of the normalized power output per panel is 

calculated to represent typical performance under the selected irradiance conditions. Finally, 

the annual mean or median normalized power values are stored for each individual panel, 

facilitating longitudinal performance analysis and comparison across years. 

C.   Estimation of Degradation Rate 

     The degradation rate of each PV array is estimated from the change in the annual average 

Performance Ratio (PR) converted to a PR at a temperature of 250C ( T 25PR =  ) as defined by 

STC. The correction equation is given by: 

STC
STC

1
PR PR* * SF

1 (T T )
=

+ −
                          (5) 

Where the Performance Ratio (PR) is given by 
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STC

P max( end ) G
PR /

P max( start ) G
=                                     (6) 

And SF is the spectral factor which is equal to 0.028 for the polycrystalline silicon module in 

our case study [8]. The coefficient  is equal to -0.0045 as defined in the same case[9]. The 

degradation rates are computed using a simple linear regression model, with performance 

metrics assessed at monthly intervals.  

Therefore, we used only the measurements under solar irradiances of 700 W/m2  or  greater. In 

addition, we selected only measurements under the condition that the difference in the solar 

irradiance between the start and the end of each 10min time interval was 5% or less [10]. 

Using the Linear method, the Degradation Rate (DR) will be given by the following equation: 

DR (1 ( Pmax(end ) / Pmax( start )))= −                                                                                        (7) 

Consequently, the Annual Degradation Rate will be calculated as follows: 

ADR ( DR / t )* 100 %=                                                                                                      (8) 

Where t   is Year. 

3. Environmental Impact 

Environmental factors influence photovoltaic (PV) system performance both in the short term 

and over the system's operational lifetime. While real-time fluctuations in variables such as 

irradiance and temperature directly impact instantaneous power output, long-term exposure to 

certain environmental conditions can accelerate degradation processes in PV modules [11], 

[12]. Specifically, high relative humidity can lead to moisture ingress, which contributes to 

delamination and corrosion of internal components. Wind speed may exacerbate mechanical 

stresses on mounting structures and module surfaces, while elevated ambient temperatures can 

accelerate material aging and reduce power conversion efficiency over time [13],[14]. Global 

irradiance levels and surface albedo also play critical roles by determining the total energy 

input to the system and influencing thermal loading. Although some factors exert only minor 

or indirect effects, their cumulative impact can be significant over the system's lifespan [15]. 

Understanding these environmental influences is essential for accurate performance 

forecasting and for developing mitigation strategies to enhance PV system durability and 

reliability. Using Multivariate Linear Regression, the degradation rate (DR) as a function of 

environmental variables can be expressed as: 

0 1 2 3 4 5DR RH(t ) Ta( t ) WS( t ) G( t ) AL( t )     = + + + + +                                            (9) 

Where the following variables are defined as: 

• RH(t): Relative Humidity (%) 

• WS(t): Wind Speed (m/s) 

• Ta(t): Ambient Temperature (°C) 

• G(t): Global Irradiance (W/m²) 

• AL(t): Albedo (dimensionless, 0–1) 

The simulation results using the GRETL software led to the following values of various 

coefficients:  
DR 0.790796 0.000121RH( t ) 0.004046Ta( t ) 0.000486WS( t )

0.000024G( t ) 1.95883AL( t )

= − − − +

− +
                                          (10) 
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Figures 1 and 2 gives the actual and fitted degradation rate during three years from 2017 to 

2019. During this period, the PV panels are exposed to sunlight and environmental conditions. 

 

Figure 1. Simulation results of the fitted and actual degradation rate 

 

Figure 2. Simulation results of the depicted degradation rate 

4. Results and discussion  

The results of the solar PV panel degradation estimation study, as depicted in Figures 1 and 

2, provide valuable insights into the performance trends of the 10-panel photovoltaic (PV) array 

over the period from 2017 to 2019. These figures illustrate both the actual and fitted 

degradation rates, derived using a multivariate linear regression model that accounts for 

environmental variables such as relative humidity (RH), wind speed (WS), ambient 

temperature (Ta), global irradiance (G), and albedo (AL). 

Figure 1 presents the actual and fitted degradation rates over the three-year period. The close 

alignment between the actual and fitted values indicates that the multivariate linear regression 
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model effectively captures the influence of environmental factors on PV panel degradation. 

The model’s coefficients, obtained using GRETL software, quantify the contributions of each 

environmental variable. For instance, the positive coefficient for relative humidity (RH) 

suggests that higher moisture levels accelerate degradation, likely due to moisture ingress 

leading to delamination and corrosion. Similarly, the coefficient for ambient temperature (Ta) 

reflects its role in accelerating material aging, which aligns with prior studies indicating 

thermal stress as a key degradation driver. The model’s ability to fit the observed data 

underscores its robustness in estimating degradation under varying environmental conditions. 

Figure 2 further illustrates the degradation rate trends, highlighting the consistency of the 

degradation patterns across the study period. The graph shows a steady decline in the 

performance ratio, normalized to standard test conditions (STC), with an annual degradation 

rate calculated using the linear regression method. The selection of measurements under stable 

irradiance conditions (G ≥ 700 W/m² and ≤ 5% variation within 10-minute intervals) ensures 

that the results are not skewed by transient environmental fluctuations, enhancing the reliability 

of the degradation estimates. The observed degradation rates are consistent with literature 

values for polycrystalline silicon modules, which typically range between 0.5% and 1% per 

year. The slight variations in the degradation rate year-over-year may be attributed to 

differences in environmental exposure, such as prolonged periods of high humidity or 

temperature extremes during specific years. 

The multivariate linear regression model’s incorporation of environmental variables provides 

a nuanced understanding of their cumulative impact. For example, while wind speed (WS) has 

a relatively smaller coefficient, its contribution to mechanical stress on module surfaces cannot 

be overlooked, particularly in regions with high wind exposure. Similarly, global irradiance 

(G) and albedo (AL) influence thermal loading and energy input, which indirectly affect 

degradation through increased operational temperatures. These findings align with prior 

research emphasizing the interplay of environmental factors in PV system performance.  

However, the study’s reliance on a three-year dataset limits the ability to capture long-term 

degradation trends, which may become more pronounced over a decade or more. Additionally, 

the model assumes linear degradation, which may not fully account for non-linear degradation 

mechanisms, such as potential-induced degradation (PID) or light-induced degradation (LID) 

that could emerge under specific conditions. Future studies could address these limitations by 

extending the temporal scope and incorporating additional degradation mechanisms into the 

model. 

In conclusion, Figures 1 and 2 demonstrate that the proposed methodology, leveraging 

multivariate linear regression and carefully curated data under near-STC conditions, effectively 

estimates PV panel degradation rates. The results highlight the significant role of 

environmental factors in driving degradation and validate the model’s predictive accuracy. 

These insights can inform maintenance strategies and system design improvements to enhance 

the long-term reliability and efficiency of PV installations. 

5. Degradation Economic Analysis  
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the performance degradation of photovoltaic (PV) modules, as quantified in Part I, has direct 

implications for the economic sustainability of giga-scale solar fields. Annual efficiency losses, 

whether due to high temperatures, ultraviolet exposure, or dust accumulation, translate into 

reduced lifetime energy output [16], [17]. This decline in generation increases the levelized 

cost of energy (LCOE), since fewer kilowatt-hours are delivered per unit of investment [18]. 

In desert climates such as those of Saudi Arabia and the wider MENA region, where 

degradation rates are higher than global averages, overlooking these performance losses would 

result in overly optimistic economic projections [19]. Thus, degradation is not merely a 

technical parameter but a decisive driver of cost competitiveness, investment returns, and 

financial risk. 

Incorporating degradation into economic models allows for a more realistic appraisal of long-

term viability. Life-cycle cost analysis (LCCA) and LCOE models can integrate degradation 

rates to capture declining yields and associated increases in O&M and replacement costs [20], 

[21]. For example, raising the assumed degradation rate from 0.5% to 2.5% annually has been 

shown to nearly double the LCOE in benchmark studies for Saudi Arabia [18]. In parallel, 

environmental and health externalities—such as avoided CO₂ emissions and air pollution 

reductions—should be monetized and added to LCOE-based assessments to reflect the full 

societal benefits of PV deployment [22], [23]. This dual approach—technical degradation 

modeling feeding into economic and environmental valuation—provides a comprehensive 

framework for assessing the sustainability of giga-scale solar fields. 

Accordingly, Part II of this study builds directly on the degradation results presented earlier. 

By embedding field-measured degradation rates into cost, environmental, and health impact 

models, we examine the holistic performance of PV megaprojects in arid zones. This integrated 

perspective enables more robust policy recommendations, supporting long-term strategies for 

clean energy expansion, grid stability, and public health co-benefits in the MENA region [19], 

[24]. 

A. Comprehensive Economic Model 

The assessment of the Levelized Cost of Energy (LCOE), environmental benefits, and health-

related externalities of grid-connected PV systems in arid climates is based on a discounted 

cash flow (DCF) framework, extended with degradation-adjusted energy yield and monetized 

environmental costs. The model integrates three main components: 

• Energy Output Model (with degradation) 

• Economic Cost Model (CAPEX, OPEX, replacements, salvage) 

• Externality Valuation Model (CO₂ and health costs) 

B. Energy Output Model 

Annual energy yield is degraded over time using a constant rate: 

( )
t 1

t 0E E 1 d
−

= −                                                                                                                (11) 

where: 

• Et = energy in year t (kWh) 

• E0 = initial annual yield (kWh) 

• d = annual degradation rate (%) 

• t = year of operation 
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Discounted lifetime energy is computed as: 

      
( )

N
t

disc t
t 1

E
E

1 r=

=
+

                                                                                                   (12) 

where r is the discount rate and N is the system lifetime. 

C. Economic Cost Model 

The total cost includes upfront capital, discounted O&M, replacement, and salvage 

adjustments: 

( ) ( ) ( )

N
opex rep salv

tot capex t Trep N
t 1

C C C
C C

1 r 1 r 1 r=

= + + −
+ + +

                                                 (13) 

 

 where: 

capexC is the capital expenditure (SAR), opexC is the annual O&M cost (SAR), repC is the 

replacement cost (% of CAPEX ) at year repT , and salvC is the salvage value (% of CAPEX ) 

E. Incorporating Degradation into Cost Models 

The LCOE captures the ratio of discounted lifetime costs to energy yield that degrades with 

time.  Mathematically: 

( )

( )

( )

tN N
0t

t t
t 0 t 0

E 1 dC
LCOE /

1 r 1 r= =

−
=

+ +
                                                                               (14) 

where: 

• Ct: total cost at time t (CAPEX, O&M, replacements), 

• E0: first-year energy yield, 

• d: annual degradation rate, 

• r: discount rate, 

• N: project lifetime. 

 

This metric provides the cost of electricity per kWh considering degradation, financing, and 

lifetime. It illustrates that the PV module degradation rates determined under desert conditions 

serve as a critical input for economic modeling. Higher degradation directly reduces annual 

energy yield, thereby increasing the levelized cost of energy (LCOE). The latter is sensitive to 

module cost multipliers, financing scenarios and degrading rates. This means that even modest 

increases in degradation can substantially elevate LCOE. 

F. LCOE Model 

The Levelized Cost of Energy is given by: 

tot discLCOE C / E=                                                                                                           (15) 

G. Externality Valuation Model 
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The avoided CO₂ and related economic benefits are estimated as: 

 

 

   

avoided tot

CO2 avoided CO2

avoided
health health

CO2 E * EF

C CO2 * P

CO2
C * P

1000


 =


=

 =


                                                                                   (16) 

      

where: 

• EF = emission factor (kg CO₂/kWh) 

• COP PCO is the carbon penalty cost (SAR/kg CO₂) 

• healthP is the health externality cost (SAR/ton CO₂) 

H. Integrated Assessment 

By combining the economic cost model and the externality valuation model, we assess not only 

the private cost (LCOE) but also the social cost/benefit of PV degradation. This provides a 

framework for policymakers in the MENA region to evaluate PV investments in terms of both 

economic efficiency and sustainability. 

The results of simulating 1 MW grid-connected solar PV system without batteries are 

obtained using core technical and economic indicators and different combinations of 

Degradation Rate (from 0.30% to 0.80%), Discount Rate (5%, 6%), and System Lifetime (20 

years, 25 years) as shown in Table 1.  
 

                                                 Table 1. Key input values used in simulation 

Input Name Value 

System Size (kW) 1,000 

System Lifetime (years)   25 

Replacement Rate (%) 10.00% 

Salvage Percent (%)  10.00% 

OPEX rate of CAPEX (%)  5.00% 

Discount Rate (%)  5.00/6.00% 

Degradation Rate (%) 0.30% - 0.8% 

Initial Yield (MWh/kW/year) 1,800 

Capex per kW  (SAR/kW) 3,500 

 

The following observations and sensitivities are worth mentioning: 

• Impact of Degradation Rate 

Every 0.05% increase in degradation increases the LCOE by approximately 0.0012 

SAR/kWh for 25-year lifetime and 6%-discount rate. 

CO₂ benefits and health savings steadily decrease with degradation. 
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• Impact of Discount Rate 

Lower discount rate (5%) reduced the LCOE (example: 0.2661 → 0.2518). 

Net present value of energy is higher under 5% due to higher weighting of future energy 

production. 

• Impact of System Lifetime 

Extending from 20 to 25 years significantly reduces LCOE, improves CO₂ savings. 

But higher lifetime increases the replacement and O&M costs, which are still 

outweighed by additional energy production. Figure 1 highlights the trade-off between 

degradation, financing, and system durability when evaluating PV projects in arid 

regions. 
 

 
 

Figure 1. Contour of LCOE versus Degradation and Discount at different system lifetimes. 

 
Table 2. Impact of Degradation Rate, Discount Rate, and System Lifetime on Solar PV Economics 

 

Degradation 

Rate (%) 

Discount 

Rate (%) 

System 

Lifetime 

(years) 

Total Cost 

(SAR) 

LCOE 

(SAR/kWh) 

CO2 

Avoided (kg) 

0.30 5.0 20.0 5895756 0.2691 24494564 

0.30 6.0 20.0 5702674 0.2826 24494564 

0.30 5.0 25.0 6209865 0.2518 30391657 

0.30 6.0 25.0 5960108 0.2661 30391657 

0.35 5.0 20.0 5895756 0.2702 24379437 

0.35 5.0 25.0 6209865 0.253 30211827 

0.35 6.0 20.0 5702674 0.2836 24379437 

0.35 6.0 25.0 5960108 0.2673 30211827 

0.40 5.0 20.0 5895756 0.2712 24264997 

0.40 5.0 25.0 6209865 0.2542 30033365 

0.40 6.0 20.0 5702674 0.2847 24264997 

0.40 6.0 25.0 5960108 0.2685 30033365 
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0.80 5.0 20.0 5895756 0.2798 23373682 

0.80 5.0 25.0 6209865 0.2638 28653578 

0.80 6.0 20.0 5702674 0.2933 23373682 

0.80 6.0 25.0 5960108 0.2782 28653578 

6. DISCUSSION 

A. Findings 

The simulation results highlight how degradation rate, discount rate, and system lifetime 

strongly affect the economic and environmental performance of grid-connected PV systems. 

Higher degradation rates reduce the output and increase the Levelized Cost of Energy (LCOE). 

For example, in a 25-year system at 6% discount, raising degradation from 0.30%/yr to 

0.80%/yr increases LCOE from 0.2661 to 0.2782 SAR/kWh, while avoided CO₂ decreases 

from 30.39×106 kg to 28.65×106 kg [25].  

The discount rate is another critical factor: moving from 5% to 6% raises LCOE by 5 to 6% 

across all scenarios [26]. Similarly, project lifetime influences cost and output: extending 

lifetime from 20 to 25 years increases total energy by almost 24% and reduces LCOE by 6 to 

8% [27]. These findings align with prior studies that show degradation and financing 

assumptions can nearly double LCOE in worst-case scenarios. 

B. Recommendations 

To minimize LCOE and maximize environmental benefit, several actions are recommended: 

For reliable and sustainable deployment of solar PV systems in the MENA region, several 

measures are essential. First, projects should prioritize the use of high-quality, desert-rated 

modules that feature heat-resistant encapsulants and anti-soiling coatings, with targeted 

degradation rates of less than 0.3% per year [28]. Equally important is the implementation of 

robust operation and maintenance (O&M) programs, including automated or frequent cleaning, 

as neglecting dust accumulation can reduce performance by more than 50% within six months 

[29]. On the financial side, securing low-cost financing is critical, since even a 1% reduction 

in the discount rate can lower the Levelized Cost of Energy (LCOE) by approximately 5% [30]. 

Extending system lifetime through preventive maintenance and timely mid-life replacements, 

such as inverters, further enhances economic viability. Finally, strong policy support is needed: 

governments across the MENA region should incentivize the adoption of durable PV 

technologies while ensuring that tariffs and power purchase agreements incorporate realistic 

assumptions about degradation rates to safeguard investor confidence and long-term 

sustainability [31]. 

C.   Limitations 

The current analysis uses deterministic, static assumptions (fixed CAPEX, uniform yield, linear 

degradation), while actual PV degradation is non-linear and climate dependent [32],[33]. 

Extreme events such as sandstorms are not explicitly modeled, and CO₂ avoidance assumes 

constant emission factors, ignoring dynamic grid decarbonization [34]. Moreover, O&M and 

replacement costs were estimated as simple percentages of CAPEX, rather than being based on 

real field data. 
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D. Perspectives 

Future research should extend beyond deterministic approaches by applying probabilistic 

models such as Monte Carlo simulations to better capture uncertainties in cost structures, 

module degradation, and weather variability. Additionally, incorporating dynamic weather-

based simulations that use local irradiance patterns and dust storm data would enhance the 

accuracy of performance projections for arid regions. To improve environmental accounting, 

researchers should also integrate regional life-cycle assessment (LCA) databases, which can 

refine embodied CO₂ estimates by reflecting local manufacturing and supply chain conditions. 

Moreover, linking life-cycle cost analysis (LCCA) with macroeconomic frameworks—

including computable general equilibrium (CGE) and input–output (I–O) models—would 

allow for a more comprehensive evaluation of economy-wide and health-related benefits. Such 

interdisciplinary approaches will yield more robust insights and provide policymakers with the 

evidence needed to design resilient and sustainable PV deployment strategies tailored to the 

specific challenges of desert environments. 

7. CONCULSION 

This study successfully leveraged a multivariate linear regression model to analyze the 

degradation of a 10-panel photovoltaic (PV) array, providing critical insights into the impact 

of environmental factors on performance decline. The confirmation that high humidity and 

elevated temperatures are significant degradation drivers, alongside the model's strong 

predictive accuracy, positions this methodology as a powerful tool for proactive solar asset 
management. Furthermore, the integrated economic analysis underscores the crucial interplay 

between degradation, discount rates, and system lifetime in determining the financial viability 

of solar projects. By quantifying the effects of degradation on the levelized cost of energy 

(LCOE) and CO2 emissions reduction, this research provides a valuable framework for 

evaluating the long-term economic and environmental performance of PV systems. This 

analysis highlights the importance of considering both the initial capital costs and the projected 

degradation rates when making investment decisions. Beyond the immediate application, the 

potential impact of this research extends to transforming industry practices. This model can 

serve as an early-warning system, allowing operators to shift from reactive, time-based 

maintenance to efficient, condition-based strategies that maximize energy yield and return on 

investment. The ability to quantitatively link environmental conditions to performance further 

empowers project developers to conduct site-specific durability analyses, selecting more 

resilient PV modules and optimizing layouts for challenging climates. 

Ultimately, the insights generated from this research can contribute to a more sustainable and 

economically viable solar energy landscape. By informing strategies that minimize degradation 

and maximize system lifespan, we can unlock the full environmental and economic potential 

of PV technology, accelerating the global transition towards a cleaner energy future. Future 

research should focus on expanding the temporal scope of the model, incorporating non-linear 

degradation mechanisms, and integrating real-time weather data for even more accurate and 

predictive maintenance strategies. Only through continuous refinement and application of such 
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models can we ensure the long-term success of solar energy as a cornerstone of a sustainable 

future. 
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