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Abstract:- With global photovoltaic (PV) capacity surpassing 2 terawatts (TW), solar energy has
emerged as the most cost-effective power source in many regions. However, ensuring long-term
reliability and performance remains a critical challenge, particularly due to module degradation
influenced by environmental factors. This study investigates the degradation behavior of a 10-panel PV
array over a three-year period using high-resolution environmental and electrical datasets. A multistep
methodology comprising data preprocessing, power normalization to standard test conditions (STC),
and annual aggregation was applied to assess performance metrics. The degradation rate was estimated
using both linear regression and a multivariate model incorporating environmental variables such as
relative humidity, ambient temperature, wind speed, global irradiance, and albedo. Results indicate an
annual degradation rate consistent with literature values for polycrystalline silicon modules (0.5-1%
per year), with temperature and humidity emerging as key accelerators of performance decline. The
multivariate model demonstrated strong predictive accuracy, closely matching actual degradation
trends. These findings highlight the significant impact of environmental stressors on PV system
performance and underscore the importance of site-specific analysis for accurate forecasting. The
economic analysis also emphasizes how degradation, discount rate, and system lifetime strongly affect
the economic and environmental performance of grid-connected PV systems.

Keywords: PV panel degradation, environmental factors, degradation rate, Economic Analysis.

1. Introduction

The global photovoltaic (PV) capacity has surpassed 2 terawatts (TW) [1]. This rapid
expansion has led to substantial cost reductions, positioning solar energy as the most affordable
power source in many regions. The 2 TW capacity is equivalent to the combined installe
electricity capacity of India, the United States, and the United Kingdom, and could theoretic
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power approximately one billion homes, assuming a 20% capacity factor and average
consumption of 3.5 MWh per year [2]. The environmental benefits of solar energy, primarily
stemming from the displacement of fossil fuel-based electricity generation, are intrinsically
linked to the lifespan and performance of PV systems. Studies have shown that decreased PV
panel efficiency due to degradation can lead to an increased lifecycle carbon footprint,
potentially undermining the intended environmental gains. Furthermore, the economic viability
of solar projects is heavily dependent on sustained energy production, with degradation directly
impacting the levelized cost of energy (LCOE) and overall investment returns [3],[4],[5].
Therefore, a comprehensive understanding of the factors driving PV panel degradation, along
with a rigorous economic assessment, is essential for optimizing system design, operation, and
maintenance strategies.

As the demand for clean and sustainable energy continues to grow, ensuring the long-term
reliability and durability of PV systems has become a critical area of research. The degradation
rate of PV modules plays a vital role in determining the efficiency, reliability, and economic
feasibility of solar energy systems. The mitigation of these degradation rates is essential for
optimizing the lifespan and performance of PV installations [6],[7]. Multivariate linear
regression is used in this study because it offers a more realistic and complete analysis. It can
model how multiple variables simultaneously affect an outcome, unlike simpler models that
only consider one factor. This approach provides a better fit for the data, giving a more accurate
picture by controlling for confounding variables [8].

This paper delves into the environmental impact of solar PV panel degradation, combining
detailed analysis of degradation mechanisms with a comprehensive economic evaluation. In
this study, the quantification of the effects of key environmental factors on degradation rates
and the assessment of the resulting economic consequences, can help to provide stakeholders
with the knowledge needed to make informed decisions that balance environmental
sustainability and economic viability in solar energy investments. We explore the current state
of research on degradation and its impact and will propose suitable strategies for maximizing
the performance and financial returns of this form of renewable energy.

2. METHODOLOGY

This study estimates the degradation of a 10-panel photovoltaic (PV) array using 12-month
datasets from different years. The available data includes timestamp, radiation components
(direct, normal, horizontal, global), DC voltage, DC current, ambient temperature, wind speed
and albedo.

A. Data Preprocessing

Data preprocessing is a crucial step in ensuring accurate and reliable analysis of photovoltaic
(PV) panel performance. The first step involves calculating the output of each individual panel
by dividing the total power generated by the PV array by the number of panels which are ten
in our case. This provides insight into the contribution of each panel to the overall energy
production. Next, the dataset must be cleaned to remove any missing values or faulty readin,
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which may result from sensor errors or external environmental conditions. Eliminating these
anomalies is essential to prevent skewed results and ensure analytical accuracy. Finally, all
timestamps must be checked for consistency and correct formatting. Uniform timestamps are
vital for accurate time-based analysis, enabling the detection of performance trends and
patterns. By following these preprocessing steps, the dataset becomes well-structured and
reliable, laying the groundwork for a comprehensive assessment of PV panel performance over
time.

o Calculation of Metrics Per Timestamp
For each data point, we calculate the DC power as follow:
Fe =Vae *1ge

1
(T})le power must be normalized to Standard Test Condition (STC):

Biorm =(Fye / Gglobal )*1000 ()
Make the power correction according to the temperature using the following relationship:
Feorrected = Brorm +(Tioq —25) (3)
Estimate the temperature of the module ( if unavailable) by the following relationship:

Tmod = Tambiem‘ +((NOCT -20)/ 800)* Gglobal 4)

Where the nominal operating cell temperature (NOCT) is defined as the solar panel
temperature based on four main standard reference environments: Irradiation on the solar panel
is equal to 800W/m?, the wind velocity is of 1 m/s and the air temperature is equal to 20°C.
Galoval 18 the global irradiance, Tyoq 1s the temperature of the module.

B. Annual Aggergation

The annual aggregation process begins by filtering the dataset by calendar year, followed by
computing either monthly or daily averages, as required. To ensure consistency and
comparability of performance metrics, data is further refined to include only clear-sky or near-
standard test condition (STC) days, defined as periods when solar irradiance (G) exceeds 700
W/m?. Subsequently, the mean or median of the normalized power output per panel is
calculated to represent typical performance under the selected irradiance conditions. Finally,
the annual mean or median normalized power values are stored for each individual panel,
facilitating longitudinal performance analysis and comparison across years.

C. Estimation of Degradation Rate

The degradation rate of each PV array is estimated from the change in the annual average
Performance Ratio (PR) converted to a PR at a temperature of 25°C (PR,_,; ) as defined by

STC. The correction equation is given by:

PRgyc- = PR* ! *SF
]+5(T_TSTC)

Where the Performance Ratio (PR) is given by

)
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R - Pmax(end) y G ©)
Pmax(start) Ggre

And sFis the spectral factor which is equal to 0.028 for the polycrystalline silicon module in
our case study [8]. The coefficient sis equal to -0.0045 as defined in the same case[9]. The
degradation rates are computed using a simple linear regression model, with performance
metrics assessed at monthly intervals.

Therefore, we used only the measurements under solar irradiances of 700 W/m? or greater. In
addition, we selected only measurements under the condition that the difference in the solar
irradiance between the start and the end of each 10min time interval was 5% or less [10].
Using the Linear method, the Degradation Rate (DR) will be given by the following equation:

DR =(1—-(Pmax(end )/ Pmax(start))) (7)
Consequently, the Annual Degradation Rate will be calculated as follows:
ADR = (DR / At )*100 % (8)

Where At is Year.

3. Environmental Impact

Environmental factors influence photovoltaic (PV) system performance both in the short term
and over the system's operational lifetime. While real-time fluctuations in variables such as
irradiance and temperature directly impact instantaneous power output, long-term exposure to
certain environmental conditions can accelerate degradation processes in PV modules [11],
[12]. Specifically, high relative humidity can lead to moisture ingress, which contributes to
delamination and corrosion of internal components. Wind speed may exacerbate mechanical
stresses on mounting structures and module surfaces, while elevated ambient temperatures can
accelerate material aging and reduce power conversion efficiency over time [13],[14]. Global
irradiance levels and surface albedo also play critical roles by determining the total energy
input to the system and influencing thermal loading. Although some factors exert only minor
or indirect effects, their cumulative impact can be significant over the system's lifespan [15].
Understanding these environmental influences is essential for accurate performance
forecasting and for developing mitigation strategies to enhance PV system durability and
reliability. Using Multivariate Linear Regression, the degradation rate (DR) as a function of
environmental variables can be expressed as:
DR = [y + PiRH (1) + frTa(t)+ BsWS(t) + B,G(t) + BsAL(1) 9)
Where the following variables are defined as:

e RH(1): Relative Humidity (%)

e WS(t): Wind Speed (m/s)

e Ta(t): Ambient Temperature (°C)

e G(1): Global Irradiance (W/m?)

e AL(t): Albedo (dimensionless, 0—1)
The simulation results using the GRETL software led to the following values of various
coefficients:
DR = —0.790796 — 0.000121RH(t ) — 0.004046 Ta('t ) + 0.000486WS(t )

—0.000024G(t ) + 1.95883 AL(t)

(1
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Figures 1 and 2 gives the actual and fitted degradation rate during three years from 2017 to
2019. During this period, the PV panels are exposed to sunlight and environmental conditions.

Actual and fitted DR
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Figure 1. Simulation results of the fitted and actual degradation rate
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Figure 2. Simulation results of the depicted degradation rate

4. Results and discussion

The results of the solar PV panel degradation estimation study, as depicted in Figures 1 and
2, provide valuable insights into the performance trends of the 10-panel photovoltaic (PV) array
over the period from 2017 to 2019. These figures illustrate both the actual and fitted
degradation rates, derived using a multivariate linear regression model that accounts for
environmental variables such as relative humidity (RH), wind speed (WS), ambient
temperature (Ta), global irradiance (G), and albedo (AL).

Figure 1 presents the actual and fitted degradation rates over the three-year period. The close
alignment between the actual and fitted values indicates that the multivariate linear regressi
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model effectively captures the influence of environmental factors on PV panel degradation.
The model’s coefficients, obtained using GRETL software, quantify the contributions of each
environmental variable. For instance, the positive coefficient for relative humidity (RH)
suggests that higher moisture levels accelerate degradation, likely due to moisture ingress
leading to delamination and corrosion. Similarly, the coefficient for ambient temperature (Ta)
reflects its role in accelerating material aging, which aligns with prior studies indicating
thermal stress as a key degradation driver. The model’s ability to fit the observed data
underscores its robustness in estimating degradation under varying environmental conditions.

Figure 2 further illustrates the degradation rate trends, highlighting the consistency of the
degradation patterns across the study period. The graph shows a steady decline in the
performance ratio, normalized to standard test conditions (STC), with an annual degradation
rate calculated using the linear regression method. The selection of measurements under stable
irradiance conditions (G > 700 W/m? and < 5% variation within 10-minute intervals) ensures
that the results are not skewed by transient environmental fluctuations, enhancing the reliability
of the degradation estimates. The observed degradation rates are consistent with literature
values for polycrystalline silicon modules, which typically range between 0.5% and 1% per
year. The slight variations in the degradation rate year-over-year may be attributed to
differences in environmental exposure, such as prolonged periods of high humidity or
temperature extremes during specific years.

The multivariate linear regression model’s incorporation of environmental variables provides
a nuanced understanding of their cumulative impact. For example, while wind speed (WS) has
a relatively smaller coefficient, its contribution to mechanical stress on module surfaces cannot
be overlooked, particularly in regions with high wind exposure. Similarly, global irradiance
(G) and albedo (AL) influence thermal loading and energy input, which indirectly affect
degradation through increased operational temperatures. These findings align with prior
research emphasizing the interplay of environmental factors in PV system performance.

However, the study’s reliance on a three-year dataset limits the ability to capture long-term
degradation trends, which may become more pronounced over a decade or more. Additionally,
the model assumes linear degradation, which may not fully account for non-linear degradation
mechanisms, such as potential-induced degradation (PID) or light-induced degradation (LID)
that could emerge under specific conditions. Future studies could address these limitations by
extending the temporal scope and incorporating additional degradation mechanisms into the
model.

In conclusion, Figures 1 and 2 demonstrate that the proposed methodology, leveraging
multivariate linear regression and carefully curated data under near-STC conditions, effectively
estimates PV panel degradation rates. The results highlight the significant role of
environmental factors in driving degradation and validate the model’s predictive accuracy.
These insights can inform maintenance strategies and system design improvements to enhance
the long-term reliability and efficiency of PV installations.

5. Degradation Economic Analysis

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com



. Power System Technology

Y 1SSN:1000-3673

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 15-10-2025

the performance degradation of photovoltaic (PV) modules, as quantified in Part I, has direct
implications for the economic sustainability of giga-scale solar fields. Annual efficiency losses,
whether due to high temperatures, ultraviolet exposure, or dust accumulation, translate into
reduced lifetime energy output [16], [17]. This decline in generation increases the levelized
cost of energy (LCOE), since fewer kilowatt-hours are delivered per unit of investment [18].
In desert climates such as those of Saudi Arabia and the wider MENA region, where
degradation rates are higher than global averages, overlooking these performance losses would
result in overly optimistic economic projections [19]. Thus, degradation is not merely a
technical parameter but a decisive driver of cost competitiveness, investment returns, and
financial risk.

Incorporating degradation into economic models allows for a more realistic appraisal of long-
term viability. Life-cycle cost analysis (LCCA) and LCOE models can integrate degradation
rates to capture declining yields and associated increases in O&M and replacement costs [20],
[21]. For example, raising the assumed degradation rate from 0.5% to 2.5% annually has been
shown to nearly double the LCOE in benchmark studies for Saudi Arabia [18]. In parallel,
environmental and health externalities—such as avoided CO: emissions and air pollution
reductions—should be monetized and added to LCOE-based assessments to reflect the full
societal benefits of PV deployment [22], [23]. This dual approach—technical degradation
modeling feeding into economic and environmental valuation—provides a comprehensive
framework for assessing the sustainability of giga-scale solar fields.

Accordingly, Part II of this study builds directly on the degradation results presented earlier.
By embedding field-measured degradation rates into cost, environmental, and health impact
models, we examine the holistic performance of PV megaprojects in arid zones. This integrated
perspective enables more robust policy recommendations, supporting long-term strategies for
clean energy expansion, grid stability, and public health co-benefits in the MENA region [19],
[24].

A. Comprehensive Economic Model

The assessment of the Levelized Cost of Energy (LCOE), environmental benefits, and health-
related externalities of grid-connected PV systems in arid climates is based on a discounted
cash flow (DCF) framework, extended with degradation-adjusted energy yield and monetized
environmental costs. The model integrates three main components:

e Energy Output Model (with degradation)

e Economic Cost Model (CAPEX, OPEX, replacements, salvage)

o Externality Valuation Model (CO: and health costs)

B. Energy Output Model

Annual energy yield is degraded over time using a constant rate:
E, = Ey(1-d)"
where:

e FE;=energy in year t (kWh)

e Eyp=initial annual yield (kWh)

e d=annual degradation rate (%)

e ¢ =year of operation
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Discounted lifetime energy is computed as:

N E
t
Egise = Z ; (12)
t=1 (1 + 7")
where 7 is the discount rate and N is the system lifetime.
C. Economic Cost Model
The total cost includes upfront capital, discounted O&M, replacement, and salvage
adjustments:
N C C C
_ opex rep salv
Ctot - Ccapex Z ¢ + Trep - N (13)
t=1 (1+r) (]+r) (]+r)
where:

Ceapex is the capital expenditure (SAR), Cypex is the annual O&M cost (SAR), C,p, is the
replacement cost (% of CAPEX ) at year 7,¢p , and Cggp, is the salvage value (% of CAPEX)

E. Incorporating Degradation into Cost Models

The LCOE captures the ratio of discounted lifetime costs to energy yield that degrades with
time. Mathematically:

N N g (1-d)
LCOE => S, o )
¢:0(1+r)t =0 (1+r)t

(14)

where:
e ( total cost at time t (CAPEX, O&M, replacements),
e Ey: first-year energy yield,
e d: annual degradation rate,
e 7 discount rate,
e N: project lifetime.

This metric provides the cost of electricity per kWh considering degradation, financing, and
lifetime. It illustrates that the PV module degradation rates determined under desert conditions
serve as a critical input for economic modeling. Higher degradation directly reduces annual
energy yield, thereby increasing the levelized cost of energy (LCOE). The latter is sensitive to
module cost multipliers, financing scenarios and degrading rates. This means that even modest
increases in degradation can substantially elevate LCOE.

F. LCOE Model

The Levelized Cost of Energy is given by:
LCOE =Cyypy / Egjge

G. Externality Valuation Model
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The avoided CO: and related economic benefits are estimated as:

co2

avoided ~—

EtOt *EF

Cco2 = CO2pided * Fro2 (16)

COZavoided
Cheatth =——,——

L 1000

Phealth

where:
e EF = emission factor (kg CO2/kWh)
e P~y Pcois the carbon penalty cost (SAR/kg COz)

e P,.unis the health externality cost (SAR/ton COz)

H. Integrated Assessment

By combining the economic cost model and the externality valuation model, we assess not only
the private cost (LCOE) but also the social cost/benefit of PV degradation. This provides a
framework for policymakers in the MENA region to evaluate PV investments in terms of both
economic efficiency and sustainability.

The results of simulating 1 MW grid-connected solar PV system without batteries are
obtained using core technical and economic indicators and different combinations of
Degradation Rate (from 0.30% to 0.80%), Discount Rate (5%, 6%), and System Lifetime (20
years, 25 years) as shown in Table 1.

Table 1. Key input values used in simulation

Input Name Value
System Size (kW) 1,000
System Lifetime (years) 25
Replacement Rate (%) 10.00%
Salvage Percent (%) 10.00%
OPEX rate of CAPEX (%) 5.00%
Discount Rate (%) 5.00/6.00%
Degradation Rate (%) 0.30% - 0.8%
Initial Yield (MWh/kW/year) 1,800

Capex per kW (SAR/kW) 3,500

The following observations and sensitivities are worth mentioning:
e Impact of Degradation Rate
Every 0.05% increase in degradation increases the LCOE by approximately 0.0012
SAR/kWh for 25-year lifetime and 6%-discount rate.
CO: benefits and health savings steadily decrease with degradation.
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e Impact of Discount Rate
Lower discount rate (5%) reduced the LCOE (example: 0.2661 — 0.2518).
Net present value of energy is higher under 5% due to higher weighting of future energy
production.

e Impact of System Lifetime
Extending from 20 to 25 years significantly reduces LCOE, improves CO: savings.
But higher lifetime increases the replacement and O&M costs, which are still
outweighed by additional energy production. Figure 1 highlights the trade-off between
degradation, financing, and system durability when evaluating PV projects in arid
regions.

Contour of LCOE vs Degradation & Discount Rate at Different Lifetimes
System Lifetime = 20.0 years System Lifetime = 25.0 years

. 6.0
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. 0288 ‘ 0274
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Figure 1. Contour of LCOE versus Degradation and Discount at different system lifetimes.

Table 2. Impact of Degradation Rate, Discount Rate, and System Lifetime on Solar PV Economics

Degradation Discount System Total Cost LCOE CO2
Rate (%) Rate (%) Lifetime (SAR) (SAR/kWh)  Avoided (kg)
(years)

0.30 5.0 20.0 5895756 0.2691 24494564
0.30 6.0 20.0 5702674 0.2826 24494564
0.30 5.0 25.0 6209865 0.2518 30391657
0.30 6.0 25.0 5960108 0.2661 30391657
0.35 5.0 20.0 5895756 0.2702 24379437
0.35 5.0 25.0 6209865 0.253 30211827
0.35 6.0 20.0 5702674 0.2836 24379437
0.35 6.0 25.0 5960108 0.2673 30211827
0.40 5.0 20.0 5895756 0.2712 24264997
0.40 5.0 25.0 6209865 0.2542 30033365
0.40 6.0 20.0 5702674 0.2847 24264997
0.40 6.0 25.0 5960108 0.2685 30033365
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0.80 5.0 20.0 5895756 0.2798 23373682
0.80 5.0 25.0 6209865 0.2638 28653578
0.80 6.0 20.0 5702674 0.2933 23373682
0.80 6.0 25.0 5960108 0.2782 28653578

6. DISCUSSION

A. Findings
The simulation results highlight how degradation rate, discount rate, and system lifetime
strongly affect the economic and environmental performance of grid-connected PV systems.
Higher degradation rates reduce the output and increase the Levelized Cost of Energy (LCOE).
For example, in a 25-year system at 6% discount, raising degradation from 0.30%/yr to
0.80%/yr increases LCOE from 0.2661 to 0.2782 SAR/kWh, while avoided CO: decreases
from 30.39%106 kg to 28.65x106 kg [25].
The discount rate is another critical factor: moving from 5% to 6% raises LCOE by 5 to 6%
across all scenarios [26]. Similarly, project lifetime influences cost and output: extending
lifetime from 20 to 25 years increases total energy by almost 24% and reduces LCOE by 6 to
8% [27]. These findings align with prior studies that show degradation and financing
assumptions can nearly double LCOE in worst-case scenarios.

B. Recommendations

To minimize LCOE and maximize environmental benefit, several actions are recommended:
For reliable and sustainable deployment of solar PV systems in the MENA region, several
measures are essential. First, projects should prioritize the use of high-quality, desert-rated
modules that feature heat-resistant encapsulants and anti-soiling coatings, with targeted
degradation rates of less than 0.3% per year [28]. Equally important is the implementation of
robust operation and maintenance (O&M) programs, including automated or frequent cleaning,
as neglecting dust accumulation can reduce performance by more than 50% within six months
[29]. On the financial side, securing low-cost financing is critical, since even a 1% reduction
in the discount rate can lower the Levelized Cost of Energy (LCOE) by approximately 5% [30].
Extending system lifetime through preventive maintenance and timely mid-life replacements,
such as inverters, further enhances economic viability. Finally, strong policy support is needed:
governments across the MENA region should incentivize the adoption of durable PV
technologies while ensuring that tariffs and power purchase agreements incorporate realistic
assumptions about degradation rates to safeguard investor confidence and long-term
sustainability [31].

C. Limitations

The current analysis uses deterministic, static assumptions (fixed CAPEX, uniform yield, linear
degradation), while actual PV degradation is non-linear and climate dependent [32],[33].
Extreme events such as sandstorms are not explicitly modeled, and CO- avoidance assumes
constant emission factors, ignoring dynamic grid decarbonization [34]. Moreover, O&M and
replacement costs were estimated as simple percentages of CAPEX, rather than being based on
real field data.
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D. Perspectives

Future research should extend beyond deterministic approaches by applying probabilistic
models such as Monte Carlo simulations to better capture uncertainties in cost structures,
module degradation, and weather variability. Additionally, incorporating dynamic weather-
based simulations that use local irradiance patterns and dust storm data would enhance the
accuracy of performance projections for arid regions. To improve environmental accounting,
researchers should also integrate regional life-cycle assessment (LCA) databases, which can
refine embodied CO: estimates by reflecting local manufacturing and supply chain conditions.
Moreover, linking life-cycle cost analysis (LCCA) with macroeconomic frameworks—
including computable general equilibrium (CGE) and input—output (I-O) models—would
allow for a more comprehensive evaluation of economy-wide and health-related benefits. Such
interdisciplinary approaches will yield more robust insights and provide policymakers with the
evidence needed to design resilient and sustainable PV deployment strategies tailored to the
specific challenges of desert environments.

7. CONCULSION

This study successfully leveraged a multivariate linear regression model to analyze the
degradation of a 10-panel photovoltaic (PV) array, providing critical insights into the impact
of environmental factors on performance decline. The confirmation that high humidity and
elevated temperatures are significant degradation drivers, alongside the model's strong
predictive accuracy, positions this methodology as a powerful tool for proactive solar asset
management. Furthermore, the integrated economic analysis underscores the crucial interplay
between degradation, discount rates, and system lifetime in determining the financial viability
of solar projects. By quantifying the effects of degradation on the levelized cost of energy
(LCOE) and CO2 emissions reduction, this research provides a valuable framework for
evaluating the long-term economic and environmental performance of PV systems. This
analysis highlights the importance of considering both the initial capital costs and the projected
degradation rates when making investment decisions. Beyond the immediate application, the
potential impact of this research extends to transforming industry practices. This model can
serve as an early-warning system, allowing operators to shift from reactive, time-based
maintenance to efficient, condition-based strategies that maximize energy yield and return on
investment. The ability to quantitatively link environmental conditions to performance further
empowers project developers to conduct site-specific durability analyses, selecting more
resilient PV modules and optimizing layouts for challenging climates.

Ultimately, the insights generated from this research can contribute to a more sustainable and
economically viable solar energy landscape. By informing strategies that minimize degradation
and maximize system lifespan, we can unlock the full environmental and economic potential
of PV technology, accelerating the global transition towards a cleaner energy future. Future
research should focus on expanding the temporal scope of the model, incorporating non-linear
degradation mechanisms, and integrating real-time weather data for even more accurate and
predictive maintenance strategies. Only through continuous refinement and application of sy,
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models can we ensure the long-term success of solar energy as a cornerstone of a sustainable
future.
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