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Abstract:- This work addresses the challenge of reducing data size without compromising analytical
accuracy in simulations of a hybrid multisource electrical system. The system generates large volumes
of time-series data—voltage, current, and power waveforms whose storage and processing can become
computationally expensive. To mitigate this, we propose a reduction strategy based on the Fast Fourier
Transform (FFT). A decimation coefficient is computed for each variable in the frequency domain, and
the signals are then reconstructed using the Inverse FFT (IFFT). Simulation results show that the method
achieves a substantial decrease in data volume while preserving the essential features of the original
signals, ensuring the reliability of subsequent analyses and machine-learning-based fault diagnostics.

Keywords: FFT, IFFT, Optimization; Multisource system; Hybrid system,; Data size; Data reduction

1. INTRODUCTION

Wind Real-time monitoring and control are essential for optimizing the performance and
reliability of multisource hybrid electrical systems, which often power critical infrastructure
such as microgrids, electric vehicles, and industrial plants[1], [2], [3], [4]. These systems rely
on a diverse array of data sources, including voltage and current sensors, power quality
analyzers, and environmental monitoring equipment[5], [6], [7], [8]. However, the high
sampling rates and extensive sensor networks result in a data deluge that can overwhelm
processing capabilities and limit the effectiveness of control algorithms. [9], [10], [11], [12].

The contemporary digital landscape is characterized by an exponential surge in data, often
referred to as "big data," which presents significant challenges related to storage, transmission,
and computational efficiency across a wide range of fields [13], [14], [15], [16]. In recent years,
the sheer volume, velocity, and variety of data have necessitated a paradigm shift from
traditional handling methods toward more sophisticated optimization and reduction techniques
[17], [18], [19], [20]. This issue is particularly pronounced in data-intensive domains such a
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cloud computing, artificial intelligence, and genomics. For instance, in healthcare, the
integration of Internet of Things (IoT) devices generates a continuous stream of sensitive data
that must be efficiently managed and stored [21]. Similarly, the training of machine learning
and deep learning models requires vast datasets, leading to high energy consumption and
computational costs [22], [23], [24], [25], [26], [27]. Another critical area is genomics, where
high-throughput technologies like nanopore sequencing produce immense raw signal data,
posing significant bottlenecks for analysis and storage [28], [29], [30], [31], [32], [33].

To combat these challenges, researchers are developing innovative methods that go beyond
traditional compression. For instance, Authors in [27] [34], [35], [36] explored and evaluated
several strategies, including dimensionality and numerosity reduction, to minimize dataset size,
thereby reducing computational cost and energy consumption. Another notable approach used
in [37] provides a comprehensive survey of data reduction methods in the context of big
data[28], [38], [39], [40], [41]. The paper systematically classifies various techniques into
categories such as sampling, dimensionality reduction, data compression, and methods based
on data mining and deep learning. Authors in [42] [43], [44], [45], [46], [47], [48], [49]explore
the optimization of SQL databases for big data workloads through a case study in the cable
manufacturing industry. The authors demonstrate the effectiveness of strategic normalization
and advanced analytical techniques within Microsoft SQL Server. Their findings reveal that
these methods significantly reduce data redundancy and dramatically improve query execution
times, offering a practical framework for using relational databases to manage large-scale data
in an industrial setting. These examples illustrate the diverse and specialized solutions being
employed to tackle the problem of big data, showcasing a trend toward domain-specific and
purpose-built algorithms to optimize data handling. Building on these advances, our research
addresses a big-data challenge that emerged during the modeling and simulation of multiple
faults in a hybrid multi-source electrical system. In this context, the need to simulate numerous
fault scenarios over extended time horizons generated massive datasets, creating two critical
issues: high storage requirements and lengthy simulation times. These datasets are
subsequently used to train machine-learning algorithms for automated fault diagnosis, so
preserving the essential information while reducing their size is crucial. To overcome these
constraints, we propose a data-reduction methodology based on the Fast Fourier Transform
(FFT). By exploiting the frequency-domain characteristics of the simulated electrical signals,
our approach identifies and removes redundant information while retaining the features
necessary for accurate fault analysis and machine-learning tasks. This work, therefore, focuses

on achieving significant reductions in both storage space and computational time, paving the
way for more efficient diagnostics of faults in complex hybrid energy systems.

The Fourier Transform, a mathematical concept first introduced by Jean-Baptiste Joseph
Fourier, has become a cornerstone for addressing computational complexity and is
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fundamental tool for signal analysis across various disciplines[50], [51], [52]. The FFT, in
particular, is an efficient algorithm for computing the discrete Fourier transform and its inverse,
providing a powerful means to convert between time and frequency domains. By decomposing
a complex time-domain signal into its constituent sinusoidal components, the FFT allows for
precise analysis and manipulation of signals based on their frequency characteristics [53], [54],
[55], [56], [57], [58], [59], [60], [61]. This capability is instrumental in our approach to data
reduction, as it enables us to identify and selectively retain the most significant frequency
components, thereby mitigating data storage concerns while preserving the essential
information for system analysis. Extending the established use of FFT-based methods for data
reduction and signal enhancement, this study focuses specifically on optimizing data size in
the simulation of a multisource system without compromising accuracy. We utilize the FFT to
calculate a decimation coefficient for each variable and subsequently employ the IFFT to
reconstruct the signals after the decimation process.

This paper is organized as follows. Section 2, “The Multisource System Under Study,” presents
the architecture and key components of the hybrid energy system. Section 3, “Problem
Statement and Formulation,” defines the data-size and simulation-time challenges and
formalizes the objectives of the study. Section 4, “Fast Fourier Transform,” describes the FFT-
based method used for data reduction. Section 5, “Simulation Results,” reports and discusses
the outcomes of applying the proposed approach. Finally, Section 6, “Conclusion,” summarizes
the main findings and highlights the benefits of the proposed strategy for efficient data storage
and reduced computational time.

2. CONFIGURATION OF THE STUDIED MULTISOURCE SYSTEM

The architecture of the multi-source system studied in this work is integrated within the
framework of an e-Bride project. Figure 1 shows the general architecture of the system.

Segurify

Conversion — swilchers

Diesel generator PV panel Tead acid battery P e e—
H f

Figurel. Global Architecture of the e-Bride System.
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This architecture consists of four main stages:

(a) Sources Stage: Allows for two types of sources, conventional and renewable, and for storing
them in a battery.

(b) Energy Conversion Stage: Composed of converters such as choppers, rectifiers, etc.
(c) Energy Management System (EMS): To control the flow of energy.
(d) Human-Machine Interface (HMI): Necessary for practical testing.

In its basic version, the test bench implements:

V' A generator set (GE) consisting of an alternator driven by a diesel engine, ere, emulated by
a DC motor driving a synchronous machine.

v A photovoltaic (PV) panel.

v A lead-acid storage battery.

It is designed to be scalable by modifying existing elements or adding new sources. All sources
share their electrical energy on a direct current (DC) bus. Energy flows are controlled by
converters driven according to the orders of the Energy Management System (EMS). The user
can configure each component or algorithm and monitor the operation of all equipment through
the Human-Machine Interface (HMI). The latter also allows for recording of all useful values
provided by the multiple instruments during the test. When solar energy is insufficient, the
diesel generator serves as a backup power source. However, due to its slow startup, the quality
of energy deteriorates because of the lack of power. For this reason, a supercapacitor was added
during the startup phase of the diesel generator to ensure power balance and maintain a stable
DC bus voltage. This component was chosen because of its fast response and high-power
density. Finally, we obtain an architecture as presented in Fig.2.

Figure 2. Architecture of the studied multi-source system.
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3. PROBLEM STATEMENT AND FORMULATION
A. PROBLEM FORMULATION

The main objective of this work is to test several faults on our hybrid system and collect the
simulation data for later use in the diagnostic phase. Indeed, the in-depth evaluation revealed
the necessity of performing many simulations, thereby generating a considerable amount of
data to be stored, exceeding our available capacities in terms of time and space. Faced with this
reality, this section proposes a strategic approach to address this dilemma by opting for an
efficient data reduction method. The central idea of this transition is to strike a balance between
the need to retain relevant data and the practical constraints imposed by limited resources. The
approach consists of using the Fast Fourier Transform (FFT) algorithm to intelligently
compress the data while preserving the essence of the recorded waveforms. This innovative
method aims to maintain the representativeness of the data, thus enabling a significant
reduction in the size of the recordings without compromising the quality of the essential
information. In this context, the storage issue has been addressed as an optimization problem,
where the Fast Fourier Transform (FFT) serves as the core objective function. By adopting this
approach, we ensure an efficient balance between data reduction and information preservation.

B. PROPOSED DATA REDUCTION METHOD

An optimization problem involves finding the best solution that maximizes or minimizes an
objective function while satisfying a set of constraints [62], [63]. In other words, the goal is to
determine the optimal configuration or combination of decision variables that yields the best
outcome according to predefined criteria, without violating any imposed limits.

The optimization problem in this study aims to find the optimal balance between data size
reduction and result accuracy for a multisource system simulation. The objective is to reduce
the overall data size of several key variables—such as Pload, Pbatt, Ppv, SOCB, and various
currents and voltages—by applying a decimation coefficient.

The data reduction problem is formulated as a multi-objective optimization problem. The goal
is to find a decimated signal y(m) that simultaneously minimizes both data size and
reconstruction error with respect to the original signal x(n).

Let x(n) be the original time-domain signal, where n=0,1,...,N—1 and N is the total number of
samples. Let y(m) be the decimated signal, where m=0,1,....M—1 and M is the number of
samples after decimation, with M<N.

The objective is to minimize the cost function J(y), defined as follows:
Minimize J(y) = a.Size(y) + (1 — a). Error(x, X)
Where:
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e Size(y) is a function representing the size of the decimated signal y(m).

e Error(x,x~) is a function that quantifies the difference between the original signal x(n)
and the reconstructed signal ¥(n) (obtained by the Inverse Fourier Transform of the
decimated signal).

e« is a weighting coefficient, 0 < a < 1, which adjusts the trade-off between data size
reduction and reconstruction error.

The reconstruction error can be measured by the Mean Squared Error (MSE):
Error(x, %) = %Zﬁ;&(x(n) — %(n))? ()
The constraints of this problem are:

% The decimation coefficient C must be a positive integer, CE Z".

R/

¢ The size of the decimated signal M must be less than the size of the original signal N.

R/

« The reconstruction error must be below a predefined tolerance threshold,
Error(x, %) <e

The chosen method for this optimization is the FFT. The FFT algorithm is used to transform
the data from the time domain to the frequency domain. This allows for the identification and
removal of less significant frequency components, which effectively compresses the data while
preserving its essential characteristics. The strategic application of FFT enables the efficient
reduction of data size without compromising the quality of results.

4. PREPARE FAST FOURIER TRANSFORM

The principle of FFT relies on the efficient decomposition of a time-domain signal into its
frequency components, enabling an in-depth analysis of the signal's spectral content. In
practical terms, the FFT converts a discrete signal in the time domain into its equivalent in the
frequency domain, highlighting frequencies and their amplitudes [64]. The fundamental idea
behind FFT is to leverage the properties of complex unit roots to group terms in the calculation
of the Fourier transform [65]. By cleverly performing these groupings, the FFT achieves a
significant reduction in the number of operations required to obtain the Fourier transform. The
Discrete Fourier Transform (DFT) of a time-domain signal x(») is given by:

X(k) = ¥N-tx(n).e/2mkn/N 3)
Where:

e X(k) is the Fourier coefficient corresponding to frequency k/N.
o k=0,1,...N—1
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The Inverse Discrete Fourier Transform (IDFT), which allows for reconstructing the time-
domain signal from the Fourier coefficients, is given by:

x(n) =~ ¥NZE X (k). e2men/N @)
The FFT is an algorithm that computes the DFT much more efficiently.

In the context of this work, we propose a frequency-based decimation process. So let X(k) be
the FFT of the original signal x(n). The decimation process consists of selecting a subset of the
Fourier coefficients X(k) based on their magnitude. Coefficients with an amplitude below a
certain threshold are set to zero.

Let X'(k) be the decimated Fourier coefficients. The reconstructed time-domain signal ¥(n) is
obtained by applying the IDFT to X'(k)

%(n) = 3 ZZs X' (k). e/2mkn/N )

The decimation coefficient is implicitly defined by the number of X'(k) coefficients that are
retained. Given that the primary purpose of employing this algorithm is to calculate a
decimation coefficient for each variable, the calculation principle remains consistent across all
variables.

The formula utilized to calculate the decimation coefficient is established as follows:
A. SAMPLING FREQUENCY (FECH):

According to the Nyquist-Shannon sampling theorem, for a signal with a maximum frequency
of Fmax, the sampling frequency must be at least twice as high to avoid aliasing.

Fech =2 X Fmax (6)
B. SAMPLING PERIOD (Tecn ):

The sampling period is the inverse of the sampling frequency.

1

(7)

Teoch, = —
ech Foch

C. Decimation Coefficient (C):

The decimation coefficient is the ratio of the new sampling period (7.cx) to the original
sampling period (4¢). It's a reduction factor that determines how many samples to keep.

— Tech
C = v (8)

Applying FFT within our context allows us to trace the spectrum of the signal. This process
involves setting a maximum frequency (Fmax) according to the Shannon theorem, which
entails that the sampling frequency (Fech) must be at least twice the maximum frequency
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ensure accurate signal representation. With Fech established, the time interval between samples
(Tech) can be determined by taking the reciprocal of Fech. Furthermore, by considering the
pre-FFT sampling period (At), the decimation coefficient can be computed by dividing Tech
by At. This coefficient signifies the degree of data reduction achieved while transitioning from
the time domain to the frequency domain. Therefore, the general formula derived from this
process encapsulates the steps of determining Fmax, calculating Fech, deriving Tech, and
ultimately evaluating the decimation coefficient based on the defined At. This systematic
approach facilitates the conversion of signal data into the frequency domain, granting insights
into the spectral characteristics critical for analysis

5. SIMULATION RESULTS

In pursuit of optimizing data storage for a hybrid system, the focal objective of this study is to
effectively manage the recorded data footprint. To achieve this, a comprehensive approach has
been adopted, involving the simulation of the system's behavior under the influence of various
faults. This emulation of unstable signal states is pivotal as it provides insights into scenarios
where the system's dynamics become non-stationary. By exposing the system to these
fluctuations, the optimization process aims to derive a decimation coefficient that remains
compatible and effective across a spectrum of potential system perturbations. The ultimate
aspiration is to tailor the decimation process such that it seamlessly accommodates the dynamic
nature of the system while conserving storage space without compromising the fidelity of
critical information. Given the wide range of variables examined in this study, our emphasis
will be placed on exploring select examples among this set of variables. Also, we conducted
two distinct simulations to validate the algorithm followed in this study.

A- SIMULATION 1

This simulation involved a short-circuit (CC) event in the diode of the PV boost converter
between 5 and 6 seconds, followed by a commutation event (CO) of the same diode between
15 and 16 seconds. The simulation was carried out with a stop time of 20 seconds, utilizing the
ode23tb solver. The total simulation time amounted to 2087.75 seconds. Fig. 3 depicts the
multifaceted analysis of current Ib dynamics: a) time evolution, b) limited inverse FFT, c)
frequency spectrum.
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Figure 3. Multifaceted Analysis of Current Ib Dynamics: a) Time Evolution, b) Limited Inverse FFT, ¢)
Frequency Spectrum.

In the visualization of results, three distinct curves provide insights into the behavior of the
current variable, Ib (Fig. 4). The uppermost curve illustrates the progression of current Ib over
time. The middle curve showcases the outcome of a limited inverse FFT applied to Ib(t),
shedding light on its frequency components. Lastly, the lowermost curve represents half of the
amplitude spectrum derived from Ib(t), revealing characteristics of the signal in the time
domain. This comprehensive representation facilitates a comprehensive understanding of Ib's
dynamics from various analytical perspectives. Through the curve of half the amplitude
spectrum of Ib(t), the choice of Fmax is determined.

If we choose Fmax = 50 Hz, and accordlng to the Shannon theorem, we have:

Fech > 2xFmax = 100 Hz, Tech =———= 10 ms and At = 10 ps, the sampling period before FFT
The decimation = TZih

For Ib: the decimation coefficient is t = 1000

7w — —

10

(=]

Spectrum of Iy
[+2]
T

=
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Figure 4. Spectrum of Ib(f) over an interval [0, Fmax].
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In the context of validating the selection of Fmax=50 Hz for Ib, the spectrum curve serves as a
crucial analytical tool. This curve visually presents the distribution of frequency components
within the Ib signal. By examining the spectrum over the interval [0, Fmax], it becomes
possible to discern the dominant frequency content within this range. In essence, the spectrum
curve allows us to identify whether significant frequency components exist below Fmax=50
Hz, thus justifying the choice of this value. Peaks and variations within the curve provide
insights into the presence of distinct frequencies, harmonics, or other relevant characteristics
of the signal. Through this analysis, we can gain confidence in the appropriateness of the
chosen Fmax value and its alignment with the signal's spectral characteristics. As such, the
spectrum curve serves as a valuable tool to empirically support the decision-making process
regarding parameter choices in the optimization strategy.

6

Error of Ty Current (A)

6L 1 1 L 1 L L 1 1 L
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T'ime (sec)

Figure 5. The difference between Ib (t) and Ib _lim (t).
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Figure 6. Ib (t) and Ib _lim (t) curve

To further validate this choice, we plotted the difference between the original time-domain
curve of Ib and the limited Ib curve after the application of FFT (Fig.5). Upon inspection, the
difference curve exhibits oscillations around nearly zero. While these oscillations may be
negligible due to their average value being close to zero, the traces of the Ib and Ib _lim curves
in Fig. 6 also exhibit minimal disparities. This is evident in both the overall shape and i
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pronounced peaks. These results collectively indicate that the transformation introduced by the
FFT preserves the essential characteristics of the signal, as the variations primarily converge
around an average of zero. This outcome underscores the successful selection of Fmax and the
appropriateness of the chosen decimation process, as the fidelity of the signal is well-
maintained, even in critical instances.

B- PV power

The same process is applied to the solar panel’s power. Subsequently, we depicted the
evolution curves of Ppv as well as the process of selecting Fmax as seen in Fig.7.
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Fig. 7. Multifaceted Analysis of Ppv Dynamics: a) Time Evolution, b) and Limited Inverse FFT, c) Frequency
Spectrum.

We always have the same curves: the top curve shows the evolution of power Ppv over time.
Whereas the middle curve represents the limited inverse FFT of Ppv (t) and the bottom curve
shows the single-sided amplitude spectrum of Ppv (t). If Fmax=10 Hz, and according to the
Shannon theorem, we get: Fech >2xFmax =20Hz, Tech =0.05 s and At = 10 ps, the sampling
period before FFT. For Ppv: decimation coefficient = 5000.
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Figure 8. Zoomed-in Spectrum of Ppv(f) within [0, Fmax].

The application of Fast Fourier Transform (FFT) to the power variable Ppv yielded results
similar to those observed for the Ib variable. Upon examining the Ppv spectrum curve over the
interval [0, Fmax] in Fig.8, we found that this curve reinforces the relevance of the chosen
Fmax, confirming its suitability for our analysis.
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Figure 9. difference between Ppv (t) and Ppv _lim (t).
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Furthermore, by comparing the difference curves between Ppv and Ppv_lim, along with the
overlaid plots of Ppv and Ppv_lim (Fig.9 and Fig.10), a striking agreement becomes evident.
The variations between the two curves converge around an average difference close to zero,
reaffirming the quality of the Fmax choice. These observations highlight FFT's ability to
preserve essential signal characteristics, bolstering our confidence in the selected decimation
methodology and its capability to maintain signal fidelity across various scenarios.

B. SIMULATION 2

Simulation 2 was designed as a direct extension of the first scenario to more thoroughly
evaluate the proposed method. In addition to the short-circuit and commutation faults applied
to the PV boost-converter diode in Simulation 1, a quantitative temperature fault was
introduced on the photovoltaic panel. This fault imposed three distinct temperature levels 45°C,
50°C, and 75°C occurring at 4 s, 5 s, and 6 s, respectively. To capture the system’s response to
these successive thermal changes, the model automatically executed three separate runs, each
reflecting one of the specified temperature values. The recorded execution times for these runs
were 1123.41 s, 1959.15 s, and 1026.79 s, demonstrating the additional computational load

required when incorporating quantitative variations into the fault-diagnosis study.

1. PV power results

Because all three additional faults are applied directly to the photovoltaic (PV) panel, the most
significant variations are observed in the panel’s own output. In a multisource system, other
energy sources continue to supply the load even if one source is degraded, so their contributions
remain largely stable, with only temporary fluctuations appearing in their measurements.
Consequently, while a full comparison of all system variables is presented later in the paper,
this section focuses specifically on a detailed analysis of the PV panel’s power response,
highlighting the primary effects of the introduced faults.

For the same analysis applied to Ppv and with the choice of Fmax=10 Hz, we observe the
following results. By examining the difference curve between Ppv and Ppv_lim in Fig.11, as
well as the concurrent plots of Ppv and Ppv_lim, we reinforce the validity of the chosen Fmax
in varying scenarios. The difference curve exhibits minimal variations, primarily close to zero,
attesting to the robustness of the maximum frequency choice despite changes in simulation
parameters and the introduction of additional faults.
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Figure 11. The difference between Ppv(t) and Ppv_lim (t).

Upon observing the overlaid traces of Ppv and Ppv_lim (Fig.12), a striking resemblance
becomes evident. This coherence demonstrates that the selected Fmax consistently captures the
essential signal characteristics, regardless of disruptions or introduced variations. This in-depth
analysis bolsters confidence in the chosen Fmax as an appropriate frequency threshold,
confirming its relevance in diverse evolving contexts.

300 T T T T
—Ppwv(t)

’ 0 50 100 150 200 250 300 350 400
Time (sec)

Figure 12. Ppv (t) and Ppv_lim (t) curve.

C. SUMMARY

We have compiled the decimation coefficients for each variable into a table to offer a
comprehensive overview of their utilization within our methodology. While we have detailed
the calculation of these coefficients for the Ib and Ppv variables, it is important to note that the
underlying principle remains consistent for all variables.

The calculation approach is tailored based on the specific properties of each variable, while
maintaining the coherence of the optimization process. This systematic approach ensures t
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each variable benefits from appropriate decimation, aligned with data size requirements, while
preserving result fidelity. Table 1 thus provides a convenient summary of the methodology

applied across all variables, reinforcing the consistency and rigor of our optimization approach.

TABLE 1. DIFFERENT DECIMATION FACTORS.

Components Decimation factor
The load power Pload 1000
The battery power Pbatt 250
The DG power Pred 5000
The PV power Ppv 5000
The battery SOC 10 000
The DC bus voltage VDC 1000
The battery current Ib 1000
The quadratic current Iq 1060
The direct current Id 2500
The current/voltage references Tbref 1000
Idref 2500
Igref 1060
Vdcref 1000

To validate our choices of maximum frequency and decimation, we are reapplying them in a
different simulation context. Utilizing the same frequency threshold and decimation values.

In the final step of validation, we present the waveforms of all variables with and without
decimation under the conditions of the first simulation.

Based on the results obtained the comparison between the graphs with and without decimation
shows that the decimation technique effectively reduces the amount of data while preserving
the key characteristics of the signals (Fig. 13-Fig. 19). The decimation process, which involves
downsampling the data, leads to a compressed time scale on the x-axis, but the overall trends,
peak values, and signal shapes remain remarkably similar. This suggests the chosen decimation
parameters are appropriate for this application.
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D. OBSERVATIONS AND INTERPRETATIONS

The graphs illustrate the system's behavior with and without decimation, highlighting the
relationship between PV panel faults, battery compensation, and overall power flow. The most
significant and dynamic changes are observed in the PV power (PPV) and battery current (Ib)
waveforms. This is a direct consequence of the simulation's fault conditions, which are
specifically applied to the PV panel. When a fault causes a sudden drop in PV power, the
battery is immediately called upon to fill the power gap and maintain the load supply. This
quick compensation is visually represented by the large, abrupt negative spikes in the battery
current, signifying discharge. The effectiveness of the decimation is evident across all
parameters. The graphs for Load Power, Direct Current (Id), and Quadratic Current (Iq)
demonstrate that the overall trends and peak values are accurately maintained, even with the
compressed time scale. The battery SOC plot, despite its narrow range, perfectly mirrors the
subtle discharge and recharge cycles. A key finding from the Id and Iq plots is that their values
remain close to zero throughout the simulation. This indicates that the diesel generator is turned
off in this scenario, confirming that the battery is the sole component responsible for

compensating for the PV faults.

E. Detailed Analysis of the Waveforms

Each set of plots tells a consistent story about the system's resilience. The PV power graphs
show multiple instances of sharp power drops, representing the applied faults. These are critical
events, and the decimated waveform accurately captures their timing and magnitude. In direct
response, the battery current exhibits large negative spikes. These are the "hero" moments of
the battery, as it steps in to prevent system instability. This direct cause-and-effect relationship
between the PV power drops and the battery current spikes is flawlessly preserved in the
decimated data. Furthermore, the Load Power graph shows the demand on the system, with
several peaks indicating a variable load. The decimation method successfully captures these
peaks, ensuring that the analysis of the system’s performance under changing load conditions
remains reliable. The near-zero values for the direct (Id) and quadratic (Iq) currents further
underscore the system's operational mode, where the diesel generator is inactive and all
regulation relies on the PV-battery combination. The integrity of these signals across both
datasets validates that the decimation technique doesn't compromise critical information.

F. Advantages of Decimation

The successful application of this decimation approach provides significant practical benefits,
most notably a drastic reduction in storage space. By down-sampling the data, the number of
stored data points is significantly reduced, which is a major advantage for long-duration
simulations that would otherwise generate massive, unwieldy datasets. This gain in storage
efficiency is achieved without sacrificing the crucial details of the system's dynamic behav;
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as evidenced by the consistent results between the original and decimated plots. The marginal
differences observed are minimal and do not impact the core analysis. Ultimately, this
comprehensive comparison reinforces the robustness and reliability of the proposed decimation
method. It demonstrates that the technique is effective for capturing the essence of the signals
across various scenarios, including dynamic fault conditions, while simultaneously providing

a highly efficient solution for data management.

TABLE 2. COMPARISON OF DATA SIZES FOR SIMULATION VARIABLES WITH AND WITHOUT

DECIMATION.

Variables Size without decimation Size with decimation
The load power 2001340 2002

The PV power 2001340 401

The battery power 2001340 8006

The DG power 2001340 401

The battery’s current 2000001 2001

The battery’s SOC 2001340 201

The direct current Id 2001340 801

The quadratic current Iq 2001340 1889

The addition of Table 2 provides crucial quantitative evidence of the decimation's
effectiveness. It clearly shows the dramatic reduction in data size for each variable, moving
from millions of data points to just thousands or hundreds. This translates directly to significant
savings in storage space and improved processing efficiency. For instance, as shown in Table
1, the size of the PV power data is reduced by a factor of nearly 5,000, from 2,001,340 data
points to just 401. This tangible data reinforces that decimation is not just a theoretical concept
but a highly practical and beneficial approach for managing large-scale simulation data.

G. Conclusion

In this paper, we successfully addressed the critical challenge of optimizing data storage
without compromising the integrity of results in a multi-source system simulation. By
leveraging the Fast Fourier Transform (FFT) for frequency analysis, we developed and
validated a decimation technique that dramatically reduces data size. Our comprehensive
analysis, supported by visual evidence and quantitative data, confirms that this approach

effectively preserves the essential characteristics of all signals, including transient events such
as PV panel faults and the corresponding dynamic response of the battery. The near-zero
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discrepancies between the original and decimated waveforms demonstrate the robustness and
accuracy of our methodology.
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