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Abstract:- This work addresses the challenge of reducing data size without compromising analytical 

accuracy in simulations of a hybrid multisource electrical system. The system generates large volumes 

of time-series data—voltage, current, and power waveforms whose storage and processing can become 

computationally expensive. To mitigate this, we propose a reduction strategy based on the Fast Fourier 

Transform (FFT). A decimation coefficient is computed for each variable in the frequency domain, and 

the signals are then reconstructed using the Inverse FFT (IFFT). Simulation results show that the method 

achieves a substantial decrease in data volume while preserving the essential features of the original 
signals, ensuring the reliability of subsequent analyses and machine-learning-based fault diagnostics. 
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1. INTRODUCTION 

Wind Real-time monitoring and control are essential for optimizing the performance and 

reliability of multisource hybrid electrical systems, which often power critical infrastructure 

such as microgrids, electric vehicles, and industrial plants[1], [2], [3], [4]. These systems rely 

on a diverse array of data sources, including voltage and current sensors, power quality 

analyzers, and environmental monitoring equipment[5], [6], [7], [8]. However, the high 

sampling rates and extensive sensor networks result in a data deluge that can overwhelm 

processing capabilities and limit the effectiveness of control algorithms. [9], [10], [11], [12]. 

The contemporary digital landscape is characterized by an exponential surge in data, often 

referred to as "big data," which presents significant challenges related to storage, transmission, 

and computational efficiency across a wide range of fields [13], [14], [15], [16]. In recent years, 

the sheer volume, velocity, and variety of data have necessitated a paradigm shift from 

traditional handling methods toward more sophisticated optimization and reduction techniques 

[17], [18], [19], [20]. This issue is particularly pronounced in data-intensive domains such as 
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cloud computing, artificial intelligence, and genomics. For instance, in healthcare, the 

integration of Internet of Things (IoT) devices generates a continuous stream of sensitive data 

that must be efficiently managed and stored [21]. Similarly, the training of machine learning 

and deep learning models requires vast datasets, leading to high energy consumption and 

computational costs [22], [23], [24], [25], [26], [27]. Another critical area is genomics, where 

high-throughput technologies like nanopore sequencing produce immense raw signal data, 

posing significant bottlenecks for analysis and storage [28], [29], [30], [31], [32], [33]. 

To combat these challenges, researchers are developing innovative methods that go beyond 

traditional compression. For instance, Authors in [27] [34], [35], [36] explored and evaluated 

several strategies, including dimensionality and numerosity reduction, to minimize dataset size, 

thereby reducing computational cost and energy consumption. Another notable approach used 

in [37] provides a comprehensive survey of data reduction methods in the context of big 

data[28], [38], [39], [40], [41]. The paper systematically classifies various techniques into 

categories such as sampling, dimensionality reduction, data compression, and methods based 

on data mining and deep learning. Authors in [42] [43], [44], [45], [46], [47], [48], [49]explore 

the optimization of SQL databases for big data workloads through a case study in the cable 

manufacturing industry. The authors demonstrate the effectiveness of strategic normalization 

and advanced analytical techniques within Microsoft SQL Server. Their findings reveal that 

these methods significantly reduce data redundancy and dramatically improve query execution 

times, offering a practical framework for using relational databases to manage large-scale data 

in an industrial setting. These examples illustrate the diverse and specialized solutions being 

employed to tackle the problem of big data, showcasing a trend toward domain-specific and 

purpose-built algorithms to optimize data handling. Building on these advances, our research 

addresses a big-data challenge that emerged during the modeling and simulation of multiple 

faults in a hybrid multi-source electrical system. In this context, the need to simulate numerous 

fault scenarios over extended time horizons generated massive datasets, creating two critical 

issues: high storage requirements and lengthy simulation times. These datasets are 

subsequently used to train machine-learning algorithms for automated fault diagnosis, so 

preserving the essential information while reducing their size is crucial. To overcome these 

constraints, we propose a data-reduction methodology based on the Fast Fourier Transform 

(FFT). By exploiting the frequency-domain characteristics of the simulated electrical signals, 

our approach identifies and removes redundant information while retaining the features 

necessary for accurate fault analysis and machine-learning tasks. This work, therefore, focuses 

on achieving significant reductions in both storage space and computational time, paving the 

way for more efficient diagnostics of faults in complex hybrid energy systems. 

The Fourier Transform, a mathematical concept first introduced by Jean-Baptiste Joseph 

Fourier, has become a cornerstone for addressing computational complexity and is a 
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fundamental tool for signal analysis across various disciplines[50], [51], [52]. The FFT, in 

particular, is an efficient algorithm for computing the discrete Fourier transform and its inverse, 

providing a powerful means to convert between time and frequency domains. By decomposing 

a complex time-domain signal into its constituent sinusoidal components, the FFT allows for 

precise analysis and manipulation of signals based on their frequency characteristics [53], [54], 

[55], [56], [57], [58], [59], [60], [61]. This capability is instrumental in our approach to data 

reduction, as it enables us to identify and selectively retain the most significant frequency 

components, thereby mitigating data storage concerns while preserving the essential 

information for system analysis. Extending the established use of FFT-based methods for data 

reduction and signal enhancement, this study focuses specifically on optimizing data size in 

the simulation of a multisource system without compromising accuracy. We utilize the FFT to 

calculate a decimation coefficient for each variable and subsequently employ the IFFT to 

reconstruct the signals after the decimation process.  

This paper is organized as follows. Section 2, “The Multisource System Under Study,” presents 

the architecture and key components of the hybrid energy system. Section 3, “Problem 

Statement and Formulation,” defines the data-size and simulation-time challenges and 

formalizes the objectives of the study. Section 4, “Fast Fourier Transform,” describes the FFT-

based method used for data reduction. Section 5, “Simulation Results,” reports and discusses 

the outcomes of applying the proposed approach. Finally, Section 6, “Conclusion,” summarizes 

the main findings and highlights the benefits of the proposed strategy for efficient data storage 

and reduced computational time. 

2. CONFIGURATION OF THE STUDIED MULTISOURCE SYSTEM  

The architecture of the multi-source system studied in this work is integrated within the 

framework of an e-Bride project. Figure 1 shows the general architecture of the system.  
 

 

Figure1. Global Architecture of the e-Bride System. 
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This architecture consists of four main stages: 

(a) Sources Stage: Allows for two types of sources, conventional and renewable, and for storing 

them in a battery. 

(b) Energy Conversion Stage: Composed of converters such as choppers, rectifiers, etc. 

(c) Energy Management System (EMS): To control the flow of energy. 

(d) Human-Machine Interface (HMI): Necessary for practical testing. 

In its basic version, the test bench implements:  

✓ A generator set (GE) consisting of an alternator driven by a diesel engine, ere, emulated by 

a DC motor driving a synchronous machine. 

✓ A photovoltaic (PV) panel.  

✓ A lead-acid storage battery. 

It is designed to be scalable by modifying existing elements or adding new sources. All sources 

share their electrical energy on a direct current (DC) bus. Energy flows are controlled by 

converters driven according to the orders of the Energy Management System (EMS). The user 

can configure each component or algorithm and monitor the operation of all equipment through 

the Human-Machine Interface (HMI). The latter also allows for recording of all useful values 

provided by the multiple instruments during the test. When solar energy is insufficient, the 

diesel generator serves as a backup power source. However, due to its slow startup, the quality 

of energy deteriorates because of the lack of power. For this reason, a supercapacitor was added 

during the startup phase of the diesel generator to ensure power balance and maintain a stable 

DC bus voltage. This component was chosen because of its fast response and high-power 

density. Finally, we obtain an architecture as presented in Fig.2. 

 

 

Figure 2. Architecture of the studied multi-source system. 
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3. PROBLEM STATEMENT AND FORMULATION 

A. PROBLEM FORMULATION  

The main objective of this work is to test several faults on our hybrid system and collect the 

simulation data for later use in the diagnostic phase. Indeed, the in-depth evaluation revealed 

the necessity of performing many simulations, thereby generating a considerable amount of 

data to be stored, exceeding our available capacities in terms of time and space. Faced with this 

reality, this section proposes a strategic approach to address this dilemma by opting for an 

efficient data reduction method. The central idea of this transition is to strike a balance between 

the need to retain relevant data and the practical constraints imposed by limited resources. The 

approach consists of using the Fast Fourier Transform (FFT) algorithm to intelligently 

compress the data while preserving the essence of the recorded waveforms. This innovative 

method aims to maintain the representativeness of the data, thus enabling a significant 

reduction in the size of the recordings without compromising the quality of the essential 

information. In this context, the storage issue has been addressed as an optimization problem, 

where the Fast Fourier Transform (FFT) serves as the core objective function. By adopting this 

approach, we ensure an efficient balance between data reduction and information preservation. 

B. PROPOSED DATA REDUCTION METHOD 

An optimization problem involves finding the best solution that maximizes or minimizes an 

objective function while satisfying a set of constraints [62], [63]. In other words, the goal is to 

determine the optimal configuration or combination of decision variables that yields the best 

outcome according to predefined criteria, without violating any imposed limits. 

The optimization problem in this study aims to find the optimal balance between data size 

reduction and result accuracy for a multisource system simulation. The objective is to reduce 

the overall data size of several key variables—such as Pload, Pbatt, Ppv, SOCB, and various 

currents and voltages—by applying a decimation coefficient. 

The data reduction problem is formulated as a multi-objective optimization problem. The goal 

is to find a decimated signal y(m) that simultaneously minimizes both data size and 

reconstruction error with respect to the original signal x(n). 

Let x(n) be the original time-domain signal, where n=0,1,…,N−1 and N is the total number of 

samples. Let y(m) be the decimated signal, where m=0,1,…,M−1 and M is the number of 

samples after decimation, with M<N. 

The objective is to minimize the cost function J(y), defined as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑦) = 𝛼. 𝑆𝑖𝑧𝑒(𝑦) + (1 − 𝛼). 𝐸𝑟𝑟𝑜𝑟(𝑥, 𝑥̃)                                                       (1) 

Where: 
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• Size(y) is a function representing the size of the decimated signal y(m). 

• Error(x,x~) is a function that quantifies the difference between the original signal x(n) 

and the reconstructed signal 𝑥̃(n) (obtained by the Inverse Fourier Transform of the 

decimated signal). 

• α is a weighting coefficient, 0 ≤ α ≤ 1, which adjusts the trade-off between data size 

reduction and reconstruction error. 

The reconstruction error can be measured by the Mean Squared Error (MSE): 

𝐸𝑟𝑟𝑜𝑟(𝑥, 𝑥̃) =
1

𝑁
∑ (𝑥(𝑛) − 𝑥̃(𝑛))2𝑁−1

𝑛=0                                                                          (2) 

The constraints of this problem are: 

❖ The decimation coefficient C must be a positive integer,  C∈ Z+. 

❖ The size of the decimated signal M must be less than the size of the original signal N. 

❖ The reconstruction error must be below a predefined tolerance threshold, 

𝐸𝑟𝑟𝑜𝑟(𝑥, 𝑥̃) < 𝜖 

The chosen method for this optimization is the FFT. The FFT algorithm is used to transform 

the data from the time domain to the frequency domain. This allows for the identification and 

removal of less significant frequency components, which effectively compresses the data while 

preserving its essential characteristics. The strategic application of FFT enables the efficient 

reduction of data size without compromising the quality of results. 

4. PREPARE FAST FOURIER TRANSFORM 

The principle of FFT relies on the efficient decomposition of a time-domain signal into its 

frequency components, enabling an in-depth analysis of the signal's spectral content. In 

practical terms, the FFT converts a discrete signal in the time domain into its equivalent in the 

frequency domain, highlighting frequencies and their amplitudes [64]. The fundamental idea 

behind FFT is to leverage the properties of complex unit roots to group terms in the calculation 

of the Fourier transform [65]. By cleverly performing these groupings, the FFT achieves a 

significant reduction in the number of operations required to obtain the Fourier transform. The 

Discrete Fourier Transform (DFT) of a time-domain signal x(n) is given by:  

𝑋(𝑘) = ∑ 𝑥(𝑛). 𝑒−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0                                                                              (3) 

Where: 

• X(k) is the Fourier coefficient corresponding to frequency k/N. 

• k=0,1,….,N−1. 
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The Inverse Discrete Fourier Transform (IDFT), which allows for reconstructing the time-

domain signal from the Fourier coefficients, is given by: 

𝑥(𝑛) =
1

𝑁
∑ 𝑋(𝑘). 𝑒𝑗2𝜋𝑘𝑛/𝑁𝑁−1

𝑛=0                                       (4) 

The FFT is an algorithm that computes the DFT much more efficiently. 

In the context of this work, we propose a frequency-based decimation process. So let X(k) be 

the FFT of the original signal x(n). The decimation process consists of selecting a subset of the 

Fourier coefficients X(k) based on their magnitude. Coefficients with an amplitude below a 

certain threshold are set to zero. 

Let X′(k) be the decimated Fourier coefficients. The reconstructed time-domain signal 𝑥̃(𝑛) is 

obtained by applying the IDFT to X′(k) 

𝑥̃(𝑛) =
1

𝑁
∑ 𝑋′(𝑘). 𝑒𝑗2𝜋𝑘𝑛/𝑁𝑁−1

𝑛=0                                             (5) 

The decimation coefficient is implicitly defined by the number of X′(k) coefficients that are 

retained. Given that the primary purpose of employing this algorithm is to calculate a 

decimation coefficient for each variable, the calculation principle remains consistent across all 

variables. 

The formula utilized to calculate the decimation coefficient is established as follows: 

A. SAMPLING FREQUENCY (FECH):  

According to the Nyquist-Shannon sampling theorem, for a signal with a maximum frequency 

of Fmax, the sampling frequency must be at least twice as high to avoid aliasing. 

𝐹𝑒𝑐ℎ  ≥ 2 × 𝐹𝑚𝑎𝑥                                                                                                    (6) 
B. SAMPLING PERIOD (Tech ): 

The sampling period is the inverse of the sampling frequency.  

𝑇𝑒𝑐ℎ =
1

𝐹𝑒𝑐ℎ
                                                      (7) 

C. Decimation Coefficient (C): 

The decimation coefficient is the ratio of the new sampling period (Tech) to the original 

sampling period (Δt). It's a reduction factor that determines how many samples to keep. 

𝐶 =
𝑇𝑒𝑐ℎ

∆𝑡
                                                                                                                                (8) 

Applying FFT within our context allows us to trace the spectrum of the signal. This process 

involves setting a maximum frequency (Fmax) according to the Shannon theorem, which 

entails that the sampling frequency (Fech) must be at least twice the maximum frequency to 
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ensure accurate signal representation. With Fech established, the time interval between samples 

(Tech) can be determined by taking the reciprocal of Fech. Furthermore, by considering the 

pre-FFT sampling period (∆t), the decimation coefficient can be computed by dividing Tech 

by ∆t. This coefficient signifies the degree of data reduction achieved while transitioning from 

the time domain to the frequency domain. Therefore, the general formula derived from this 

process encapsulates the steps of determining Fmax, calculating Fech, deriving Tech, and 

ultimately evaluating the decimation coefficient based on the defined ∆t. This systematic 

approach facilitates the conversion of signal data into the frequency domain, granting insights 

into the spectral characteristics critical for analysis 

5. SIMULATION RESULTS  

In pursuit of optimizing data storage for a hybrid system, the focal objective of this study is to 

effectively manage the recorded data footprint. To achieve this, a comprehensive approach has 

been adopted, involving the simulation of the system's behavior under the influence of various 

faults. This emulation of unstable signal states is pivotal as it provides insights into scenarios 

where the system's dynamics become non-stationary. By exposing the system to these 

fluctuations, the optimization process aims to derive a decimation coefficient that remains 

compatible and effective across a spectrum of potential system perturbations. The ultimate 

aspiration is to tailor the decimation process such that it seamlessly accommodates the dynamic 

nature of the system while conserving storage space without compromising the fidelity of 

critical information. Given the wide range of variables examined in this study, our emphasis 

will be placed on exploring select examples among this set of variables. Also, we conducted 

two distinct simulations to validate the algorithm followed in this study. 

A- SIMULATION 1  

This simulation involved a short-circuit (CC) event in the diode of the PV boost converter 

between 5 and 6 seconds, followed by a commutation event (CO) of the same diode between 

15 and 16 seconds. The simulation was carried out with a stop time of 20 seconds, utilizing the 

ode23tb solver. The total simulation time amounted to 2087.75 seconds. Fig. 3 depicts the 

multifaceted analysis of current Ib dynamics: a) time evolution, b) limited inverse FFT, c) 

frequency spectrum. 
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Figure 3.  Multifaceted Analysis of Current Ib Dynamics: a) Time Evolution, b) Limited Inverse FFT, c) 

Frequency Spectrum. 

In the visualization of results, three distinct curves provide insights into the behavior of the 

current variable, Ib (Fig. 4). The uppermost curve illustrates the progression of current Ib over 

time. The middle curve showcases the outcome of a limited inverse FFT applied to Ib(t), 

shedding light on its frequency components. Lastly, the lowermost curve represents half of the 

amplitude spectrum derived from Ib(t), revealing characteristics of the signal in the time 

domain. This comprehensive representation facilitates a comprehensive understanding of Ib's 

dynamics from various analytical perspectives. Through the curve of half the amplitude 

spectrum of Ib(t), the choice of Fmax is determined. 

If we choose Fmax = 50 Hz, and according to the Shannon theorem, we have: 

Fech ≥ 2×Fmax = 100 Hz, Tech = 
1

𝐹𝑒𝑐ℎ
= 10 ms and ∆t = 10 µs, the sampling period before FFT 

The decimation = 
𝑇𝑒𝑐ℎ

∆𝑡
 

For Ib: the decimation coefficient is t = 1000  

 

Figure 4.  Spectrum of Ib(f) over an interval [0, Fmax]. 
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In the context of validating the selection of Fmax=50 Hz for Ib, the spectrum curve serves as a 

crucial analytical tool. This curve visually presents the distribution of frequency components 

within the Ib signal. By examining the spectrum over the interval [0, Fmax], it becomes 

possible to discern the dominant frequency content within this range. In essence, the spectrum 

curve allows us to identify whether significant frequency components exist below Fmax=50 

Hz, thus justifying the choice of this value. Peaks and variations within the curve provide 

insights into the presence of distinct frequencies, harmonics, or other relevant characteristics 

of the signal. Through this analysis, we can gain confidence in the appropriateness of the 

chosen Fmax value and its alignment with the signal's spectral characteristics. As such, the 

spectrum curve serves as a valuable tool to empirically support the decision-making process 

regarding parameter choices in the optimization strategy. 

 

Figure 5. The difference between Ib (t) and Ib _lim (t). 

 

Figure 6. Ib (t) and Ib _lim (t) curve 

To further validate this choice, we plotted the difference between the original time-domain 

curve of Ib and the limited Ib curve after the application of FFT (Fig.5). Upon inspection, the 

difference curve exhibits oscillations around nearly zero. While these oscillations may be 

negligible due to their average value being close to zero, the traces of the Ib and Ib _lim curves 

in Fig. 6 also exhibit minimal disparities. This is evident in both the overall shape and in 
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pronounced peaks. These results collectively indicate that the transformation introduced by the 

FFT preserves the essential characteristics of the signal, as the variations primarily converge 

around an average of zero. This outcome underscores the successful selection of Fmax and the 

appropriateness of the chosen decimation process, as the fidelity of the signal is well-

maintained, even in critical instances. 

B- PV power 

The same process is applied to the solar panel’s power. Subsequently, we depicted the 

evolution curves of Ppv as well as the process of selecting Fmax as seen in Fig.7. 

 

 

Fig. 7. Multifaceted Analysis of Ppv Dynamics: a) Time Evolution, b) and Limited Inverse FFT, c) Frequency 

Spectrum. 

 

We always have the same curves: the top curve shows the evolution of power Ppv over time. 

Whereas the middle curve represents the limited inverse FFT of Ppv (t) and the bottom curve 

shows the single-sided amplitude spectrum of Ppv (t). If Fmax=10 Hz, and according to the 

Shannon theorem, we get:  Fech ≥ 2×Fmax = 20Hz, Tech = 0.05 s and ∆t = 10 µs, the sampling 

period before FFT. For Ppv: decimation coefficient = 5000. 
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Figure 8. Zoomed-in Spectrum of Ppv(f) within [0, Fmax]. 

The application of Fast Fourier Transform (FFT) to the power variable Ppv yielded results 

similar to those observed for the Ib variable. Upon examining the Ppv spectrum curve over the 

interval [0, Fmax] in Fig.8, we found that this curve reinforces the relevance of the chosen 

Fmax, confirming its suitability for our analysis. 

 
Figure 9. difference between Ppv (t) and Ppv _lim (t). 

 
Figure 10. Ppv (t) and Ppv _lim (t) curve. 
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Furthermore, by comparing the difference curves between Ppv and Ppv_lim, along with the 

overlaid plots of Ppv and Ppv_lim (Fig.9 and Fig.10), a striking agreement becomes evident. 

The variations between the two curves converge around an average difference close to zero, 

reaffirming the quality of the Fmax choice. These observations highlight FFT's ability to 

preserve essential signal characteristics, bolstering our confidence in the selected decimation 

methodology and its capability to maintain signal fidelity across various scenarios. 

B. SIMULATION 2  

Simulation 2 was designed as a direct extension of the first scenario to more thoroughly 

evaluate the proposed method. In addition to the short-circuit and commutation faults applied 

to the PV boost-converter diode in Simulation 1, a quantitative temperature fault was 

introduced on the photovoltaic panel. This fault imposed three distinct temperature levels 45°C, 

50°C, and 75°C occurring at 4 s, 5 s, and 6 s, respectively. To capture the system’s response to 

these successive thermal changes, the model automatically executed three separate runs, each 

reflecting one of the specified temperature values. The recorded execution times for these runs 

were 1123.41 s, 1959.15 s, and 1026.79 s, demonstrating the additional computational load 

required when incorporating quantitative variations into the fault-diagnosis study. 

1. PV power results 

Because all three additional faults are applied directly to the photovoltaic (PV) panel, the most 

significant variations are observed in the panel’s own output. In a multisource system, other 

energy sources continue to supply the load even if one source is degraded, so their contributions 

remain largely stable, with only temporary fluctuations appearing in their measurements. 

Consequently, while a full comparison of all system variables is presented later in the paper, 

this section focuses specifically on a detailed analysis of the PV panel’s power response, 

highlighting the primary effects of the introduced faults. 

For the same analysis applied to Ppv and with the choice of Fmax=10 Hz, we observe the 

following results. By examining the difference curve between Ppv and Ppv_lim in Fig.11, as 

well as the concurrent plots of Ppv and Ppv_lim, we reinforce the validity of the chosen Fmax 

in varying scenarios. The difference curve exhibits minimal variations, primarily close to zero, 

attesting to the robustness of the maximum frequency choice despite changes in simulation 

parameters and the introduction of additional faults. 
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Figure 11. The difference between Ppv(t) and Ppv_lim (t). 

Upon observing the overlaid traces of Ppv and Ppv_lim (Fig.12), a striking resemblance 

becomes evident. This coherence demonstrates that the selected Fmax consistently captures the 

essential signal characteristics, regardless of disruptions or introduced variations. This in-depth 

analysis bolsters confidence in the chosen Fmax as an appropriate frequency threshold, 

confirming its relevance in diverse evolving contexts. 

 
Figure 12. Ppv (t) and Ppv_lim (t) curve. 

C. SUMMARY 
We have compiled the decimation coefficients for each variable into a table to offer a 

comprehensive overview of their utilization within our methodology. While we have detailed 

the calculation of these coefficients for the Ib and Ppv variables, it is important to note that the 

underlying principle remains consistent for all variables.  

The calculation approach is tailored based on the specific properties of each variable, while 

maintaining the coherence of the optimization process. This systematic approach ensures that 
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each variable benefits from appropriate decimation, aligned with data size requirements, while 

preserving result fidelity. Table 1 thus provides a convenient summary of the methodology 

applied across all variables, reinforcing the consistency and rigor of our optimization approach. 
TABLE 1. DIFFERENT DECIMATION FACTORS. 

Components Decimation factor 

The load power Pload 1000 

The battery power Pbatt 250 

The DG power Pred 5000 

The PV power Ppv 5000 

The battery SOC 10 000 

The DC bus voltage VDC 1000 

The battery current Ib 1000 

The quadratic current Iq 1060 

The direct current Id 2500 

The current/voltage references Ibref 1000 

Idref 2500 

Iqref 1060 

Vdcref 1000 

 

To validate our choices of maximum frequency and decimation, we are reapplying them in a 

different simulation context. Utilizing the same frequency threshold and decimation values. 

In the final step of validation, we present the waveforms of all variables with and without 

decimation under the conditions of the first simulation. 

Based on the results obtained the comparison between the graphs with and without decimation 

shows that the decimation technique effectively reduces the amount of data while preserving 

the key characteristics of the signals (Fig. 13-Fig. 19). The decimation process, which involves 

downsampling the data, leads to a compressed time scale on the x-axis, but the overall trends, 

peak values, and signal shapes remain remarkably similar. This suggests the chosen decimation 

parameters are appropriate for this application. 
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Figure 13. The load power variation: a) Without decimation, b) With decimation. 

 
Fig. 14. The Ppv power variation: a) Without decimation, b) With decimation. 

 
Figure 15. The DG power variation: a) Without decimation, b) With decimation. 
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Figure 16. The battery’s SOC variation: a) Without decimation, b) With decimation. 

 
Figure 17. The battery’s current variation: a) Without decimation, b) With decimation. 

 
Figure 18. The direct current variation: a) Without decimation, b) With decimation. 

 
Figure 19. The quadratic current variation: a) Without decimation, b) With decimation. 
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D. OBSERVATIONS AND INTERPRETATIONS 

The graphs illustrate the system's behavior with and without decimation, highlighting the 

relationship between PV panel faults, battery compensation, and overall power flow. The most 

significant and dynamic changes are observed in the PV power (PPV) and battery current (Ib) 

waveforms. This is a direct consequence of the simulation's fault conditions, which are 

specifically applied to the PV panel. When a fault causes a sudden drop in PV power, the 

battery is immediately called upon to fill the power gap and maintain the load supply. This 

quick compensation is visually represented by the large, abrupt negative spikes in the battery 

current, signifying discharge. The effectiveness of the decimation is evident across all 

parameters. The graphs for Load Power, Direct Current (Id), and Quadratic Current (Iq) 

demonstrate that the overall trends and peak values are accurately maintained, even with the 

compressed time scale. The battery SOC plot, despite its narrow range, perfectly mirrors the 

subtle discharge and recharge cycles. A key finding from the Id and Iq plots is that their values 

remain close to zero throughout the simulation. This indicates that the diesel generator is turned 

off in this scenario, confirming that the battery is the sole component responsible for 

compensating for the PV faults. 

E. Detailed Analysis of the Waveforms 

Each set of plots tells a consistent story about the system's resilience. The PV power graphs 

show multiple instances of sharp power drops, representing the applied faults. These are critical 

events, and the decimated waveform accurately captures their timing and magnitude. In direct 

response, the battery current exhibits large negative spikes. These are the "hero" moments of 

the battery, as it steps in to prevent system instability. This direct cause-and-effect relationship 

between the PV power drops and the battery current spikes is flawlessly preserved in the 

decimated data. Furthermore, the Load Power graph shows the demand on the system, with 

several peaks indicating a variable load. The decimation method successfully captures these 

peaks, ensuring that the analysis of the system’s performance under changing load conditions 

remains reliable. The near-zero values for the direct (Id) and quadratic (Iq) currents further 

underscore the system's operational mode, where the diesel generator is inactive and all 

regulation relies on the PV-battery combination. The integrity of these signals across both 

datasets validates that the decimation technique doesn't compromise critical information. 

F. Advantages of Decimation 

The successful application of this decimation approach provides significant practical benefits, 

most notably a drastic reduction in storage space. By down-sampling the data, the number of 

stored data points is significantly reduced, which is a major advantage for long-duration 

simulations that would otherwise generate massive, unwieldy datasets. This gain in storage 

efficiency is achieved without sacrificing the crucial details of the system's dynamic behavior, 
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as evidenced by the consistent results between the original and decimated plots. The marginal 

differences observed are minimal and do not impact the core analysis. Ultimately, this 

comprehensive comparison reinforces the robustness and reliability of the proposed decimation 

method. It demonstrates that the technique is effective for capturing the essence of the signals 

across various scenarios, including dynamic fault conditions, while simultaneously providing 

a highly efficient solution for data management. 
TABLE 2. COMPARISON OF DATA SIZES FOR SIMULATION VARIABLES WITH AND WITHOUT 

DECIMATION. 

Variables Size without decimation Size with decimation 

The load power 2001340 2002 

The PV power 2001340 401 

The battery power 2001340 8006 

The DG power 2001340 401 

The battery’s current 2000001 2001 

The battery’s SOC 2001340 201 

The direct current Id 2001340 801 

The quadratic current Iq 2001340 1889 

 

The addition of Table 2 provides crucial quantitative evidence of the decimation's 

effectiveness. It clearly shows the dramatic reduction in data size for each variable, moving 

from millions of data points to just thousands or hundreds. This translates directly to significant 

savings in storage space and improved processing efficiency. For instance, as shown in Table 

1, the size of the PV power data is reduced by a factor of nearly 5,000, from 2,001,340 data 

points to just 401. This tangible data reinforces that decimation is not just a theoretical concept 

but a highly practical and beneficial approach for managing large-scale simulation data. 

G. Conclusion 

In this paper, we successfully addressed the critical challenge of optimizing data storage 

without compromising the integrity of results in a multi-source system simulation. By 

leveraging the Fast Fourier Transform (FFT) for frequency analysis, we developed and 

validated a decimation technique that dramatically reduces data size. Our comprehensive 

analysis, supported by visual evidence and quantitative data, confirms that this approach 

effectively preserves the essential characteristics of all signals, including transient events such 

as PV panel faults and the corresponding dynamic response of the battery. The near-zero 
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discrepancies between the original and decimated waveforms demonstrate the robustness and 

accuracy of our methodology. 
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