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Abstract:- This paper investigates a computational intelligence approach using the Recurrent Self-

Organizing Map (RSOM) and its MapReduce framework for anomaly detection in wind energy 

generation. Given that wind power represents approximately 25% of the global installed renewable 

energy capacity, its reliability is crucial. The proposed methodology leverages an intelligent dynamic 

unsupervised deep learning algorithm within a distributed MapReduce processing paradigm to diagnose 

and isolate faults in real time across various wind energy sources. The applied computational approach 

differs from existing methods by simultaneously analyzing, in adverse environments, multiple signals 

acquired in real time for the purpose of intelligent diagnosis of wind turbine systems located in remote 

mountainous regions. Signal acquisition and processing were carried out in an experimental setup. The 

findings provide insights into its potential benefits, limitations, and economic viability. 

Keywords: Wind energy generation; computational MapReduce intelligence; unsupervised deep 
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1. INTRODUCTION 

Wind energy is one of the fastest growing and most reliable sources of renewable energy, 

offering a clean and sustainable alternative to fossil fuels. By harnessing the kinetic energy of 

the wind through turbines, wind energy converts natural air movement into electricity without 

producing harmful emissions or depleting finite resources. As the world transitions toward 

more sustainable energy systems, wind energy plays a critical role in reducing greenhouse gas 

emissions, combating climate change, and promoting energy independence. One of the key 

advantages of wind energy is its abundance and availability in many regions around the world. 

From large onshore wind farms to innovative offshore installations, wind energy systems can 

be adapted to diverse environments, making it a versatile and scalable energy solution. 

Additionally, advancements in wind turbine technology have significantly improved 
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efficiency, reduced costs, and increased the capacity of wind energy, making it more 

competitive with traditional energy sources [1], [2]. 

     Beyond its environmental benefits, wind energy contributes to economic growth by creating 

jobs in manufacturing, installation, and maintenance, while also reducing reliance on imported 

fossil fuels. As a renewable energy source, wind energy is not only an essential component of 

a sustainable energy future but also a key driver for achieving global energy security and 

resilience. 

     Due to the need for maximum wind exposure, these systems are often installed in remote 

mountainous areas, making maintenance and fault diagnosis challenging [3], [4]. The dynamic 

and highly variable nature of the signals captured further complicates anomaly detection. Over 

the past decade, various approaches have been developed to improve fault recognition. 

Statistical Process Control (SPC) has been widely used, relying on control charts and statistical 

thresholds to identify deviations in process variables [5], [6]. Supervised machine learning 

techniques, such as decision trees, support vector machines (SVMs), and neural networks 

trained on labeled data, have been employed to classify anomalies accurately. In parallel, 

unsupervised machine learning methods have emerged, using clustering algorithms like k-

means and DBSCAN, as well as density estimation techniques such as Gaussian Mixture 

Models (GMM) and One-Class SVM, to detect anomalies without requiring labeled data [7]. 

Deep learning has also made significant contributions by leveraging architectures like 

autoencoders, Variational Autoencoders (VAEs), and Generative Adversarial Networks 

(GANs) for complex pattern recognition tasks [8], [9]. Additionally, time-series analysis 

methods, including ARIMA, exponential smoothing, and state-space models, have been 

applied to detect anomalies that evolve over time [10]. More recently, ensemble methods have 

gained attention by combining multiple approaches to enhance detection accuracy and 

robustness [11]. While effective, these models depend heavily on high-quality training data, 

are sensitive to outliers and class imbalances, and may struggle to adapt to environmental 

variations. To address these limitations, this paper proposes an intelligent RSOM-MapReduce 

approach, integrating Recurrent Self-Organizing Maps (RSOM) convolved with a distributed 

processing paradigm. This hybrid method enhances dynamic anomaly detection by 

incorporating temporal dependencies and parallel data processing. 

     The proposed system processes three distinct wind generator signals in two stages: first, 

applying RSOM for adaptive pattern recognition and second, leveraging the MapReduce 

framework for parallel anomaly isolation. This paper demonstrates the suitability of a recurrent 

deep neural network model, investigates its application in wind energy diagnostics, and 

evaluates the use of the MapReduce paradigm for distributed fault detection.  

Following this introduction, Section 2 provides a comparative review of relevant models 

reported in the literature. Section 3 details the proposed methodology developed to tackle the 

key challenges in this domain. Section 4 presents the experimental implementation and the 

results obtained, while Section 5 offers a thorough analysis and discussion of these findings. 

2. REVIEW ON THE INTEGRATED RECURSIVE SOM MODEL 

The Recursive SOM (RSOM) is derived from the unsupervised Kohonen SOM algorithm and 

was introduced by Thomas Voegtlin, drawing inspiration from Elman's SRN (simple recurrent 

network). Elman's SRN modifies the perceptron network by incorporating a hidden layer, using 
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a delayed version of its activities as an additional input. Its primary function is to establish 

connections between input and preceding output sequences [12]. 

In this framework, each neuron is trained to encode a specific pair comprising input and 

context. Consequently, the learning process involves iteratively acquiring representations of 

longer sequences, building upon the already acquired representations of shorter sequences. The 

quantization error can be expressed by the following mathematical model [13]: 
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In this equation, x(t) and y(t-1) represent, respectively, the input sequence and that of the 

context (previous output). Wi is the 'codebook' reference, or the weight vector associated with 

unit i; α and β are stability coefficients. 

The network learns by associating the current input with previous states of activity. Therefore, 

each neuron becomes responsive to an input sequence, and the BMU is given by [14]: 
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The best matching unit vector V is minimizing the Euclidian distance between the input vector 

and the weight vector. The learning rules used to update the feed-forward and recurrent weights 

are given by [15], [16]: 
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Given that hiv represents the neighborhood function applied to the RSOM map, the dynamic 

nature of recurrent links can lead to unstable representations. To mitigate this instability, one 

approach is to apply a transfer function F of the exponential type, empirically chosen to ensure 

continuity and constrain its values between 0 and 1. 
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The concept of employing a transfer function to stabilize the learning process of recursive SOM 

originates from its modeling using a single-neuron network. The output state, denoted as Y, is 

determined by the transfer function of the sum of input weights [17].  

Thomas Voegtlin validated the self-referential algorithm using a two-dimensional recursive 

SOM comprising 20x20 neurons. This SOM was trained on “Aldous Huxley's Brave New 

World”, an English text where each letter is represented in 5-bit encoding and presented to the 

network as individual inputs. Punctuation symbols were excluded from the text, and the neural 

activity was reset between consecutive words [18]. The learning rate was constant: γ = 0.01. 
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The neighborhood function has a constant size: σ = 0.5. Other parameters are chosen: α = 3 

and β = 0,7. 

     When the leaky integrators of the unit’s outputs are relocated to the inputs, a modified TKM, 

known as the Recurrent Self-Organizing Map (RSOM), is obtained. This adjustment results in 

a leaky time-difference vector, defined by the following relation [19], [20]: 

))()(.()1().1()( twtxtyty iii −+−−= 
                                         (6) 

In the equation α, a constant between 0 and 1 designates the leakage coefficient which replaces 

d in the temporal Kohonen map (TKM). The d is a time constant between 0 and 1, which 

denotes a forgetting term. An RSOM unit is therefore schematized as in Figure 1 below: 

 

Figure1. Representation of an RSOM unit that acts as a recurrent filter 

     This suggests that a high α value signifies shorter memorization, while a low α value 

indicates longer memorization and slower activation decay. When α equals 1, RSOM functions 

as a regular SOM, as seen in the equation of the output yi (t) [21]. The incorporation of past 

algorithm executions in a recursive manner has been implemented in the Recurrent SOM 

(RSOM). 

     The Kohonen learning algorithm serves two primary purposes. First, it identifies optimal 

prototypes that represent the dataset, a process known as vector quantization. Second, it 

organizes these prototypes on a map such that nearby prototypes in the data space correspond 

to neighboring neurons on the map. This proximity is typically defined either by an Euclidean 

metric or by the topological arrangement of neurons that react similarly to input data.This 

algorithm is considered efficient: when an individual is exposed to the network, neurons engage 

in competition until only one emerges as the winner. The winning neuron possesses the 

prototype with the smallest Euclidean distance from the exposed individual. Competitive 

learning entails reinforcing the winning neuron, making it more responsive to subsequent 

exposures of the same individual. Meanwhile, connection weights are adjusted based on inputs. 

Ultimately, neurons in a competitive learning network function as detectors, each aiming to 

identify a unique characteristic present in the input data [22]. The victorious neuron from the 

competition phase determines the center of a map area termed the "neighborhood," whose size 

varies over time. The update or adaptation phase relocates the prototypes to align them with 

the input presentations to the network. This algorithm is characterized by several key 
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parameters. It uses a 10 × 10 neuron grid, providing a map with 100 processing units to 

facilitate straightforward percentage-based analysis. The chosen topology is hexagonal, 

offering a well-structured and coherent visualization. Training is performed in an unsupervised 

manner, making it suitable for handling large volumes of data. Additionally, the algorithm is 

set to run for 200 iterations to enable real-time processing.  

     Hierarchical methods are commonly applied in scenarios requiring the breakdown of a 

complex task into several simpler sub-tasks across multiple levels, aiming for more precise 

identification outcomes. Each hierarchical level comprises one or multiple RSOM maps, often 

delineated by various time scales. The differentiation among current methodologies lies in how 

RSOM outcomes from one level are encoded for transition to another. Variations are noted in 

the quantity of levels used, the quantity of RSOM units per level, and the interconnections 

between these diverse levels. Using of a specific hyperbolic lattice structure significantly 

accelerates the search process for larger maps [23], [24]. The growing hierarchical RSOM 

(GHRSOM) represents an enhancement to the RSOM map's capabilities in two key aspects. 

Firstly, it incorporates an increasingly sophisticated version of RSOM. Secondly, it tailors the 

RSOM map to accommodate tree-structured data [25], [26]. Figure 2 illustrates the hierarchical 

RSOM architecture in Anomaly detection. 

 

Figure 2. Diagram of a hierarchical RSOM variant in anomaly detection 

 

This model comprises two tiers. The initial tier consists of a singular motherboard, RSOM, 

responsible for classifying the four anomaly categories: electrical, mechanical, thermal, and 

environmental. The subsequent tier encompasses multiple cards dedicated to classifying 

anomalies within each category. Notably, the first tier of the hierarchy undergoes 

comprehensive learning using the entire dataset of signal segments labeled with macro class 

identifiers. 
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     The RSOM maps in the second tier are trained on segmented datasets, with each card 

serving as an independent module. However, a drawback of this hierarchical RSOM structure 

is that incorrect classification at the initial level can impact the results in the subsequent level. 

To ensure ease in fault recognition rates, the size of the RSOM map at the second level for 

recognition purposes is set at 10x10. This model is specifically employed for anomaly 

classification at the source of its origin. The fusion in a convolutional way of RSOM and Map 

Reduce is implemented within the terminal board of the Wind Energy Generator System 

presented by Figure 3. This system is a typical wind energy generation setup designed to 

convert wind energy into electrical power and integrate it into the electrical grid. The wind 

turbine captures the kinetic energy of the wind and converts it into rotational mechanical energy 

through its blades, which are connected to a shaft that drives the generator. The induction 

generator (IG) then converts this mechanical energy into electrical energy. Operating 

asynchronously, the IG is particularly suitable for variable-speed wind turbines, enabling it to 

adapt to fluctuating wind conditions efficiently. 

     The power converter ensures the generated power.  First, the rectifier converts the variable 

AC power from the generator into DC, and then the inverter converts the DC power back into 

a controlled AC output with stable voltage and frequency. This consistency is crucial for 

seamless integration with the grid. The transformer steps up the voltage of the conditioned 

power to meet the high-voltage requirements of the grid, ensuring efficient long-distance power 

transmission. Finally, the generated electricity is fed into the grid, where synchronization of 

voltage, frequency, and phase is achieved through the combined efforts of the power converter 

and transformer. This comprehensive system ensures reliable and efficient generation and 

delivery of wind energy to consumers. 

 

Figure 3. Power system wind energy generation 

To ensure the reliable operation of the wind energy generation system, it is critical to diagnose 

faults that may occur within its components. Faults in these systems can arise in various parts, 

such as the wind turbine, induction generator, power converter, transformer, or sensors used 

for monitoring. These faults, if left undetected, can lead to reduced efficiency, increased 

downtime, and even catastrophic failures, compromising the reliability of energy production. 

Diagnosing these faults in wind generators is particularly challenging due to the dynamic and 

variable nature of wind energy systems, as well as the complexity of signals generated by the 

components. This study focuses on developing an advanced fault diagnostic approach for the 

wind generator in the presented system, leveraging a hybrid Convolutional RSOM MapReduce 
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framework. By integrating efficient data processing and intelligent anomaly detection 

techniques, the proposed method aims to identify, classify, and isolate faults accurately and in 

real time, ensuring the system’s continuous and optimal operation. 

3. PROPOSED COMPUTATIONAL RSOM MAPREDUCE MODEL 

The MapReduce model operates as a distributed processing paradigm, initially popularized 

by Google in its implementation that involved a file system distribution for data exchange. 

However, subsequent implementations have surfaced targeting diverse architectures and 

communication channels, including shared memory systems or distributed systems with 

varied communication protocols. Each MapReduce algorithm incorporates two pivotal 

functions: the map function and the reduced function. The map function transforms a 

dataset into another dataset, organizing individual elements into grouped pairs (key/value). 

Subsequently, the reduced function processes the output of the map function by 

consolidating these key-value pairs into a smaller set. The primary advantage of this model 

lies in its ease of deploying data processing across multiple computing nodes. Initially 

breaking down a data processing application into mappers and reducers might seem 

unconventional. However, once an application is built based on the MapReduce paradigm, 

scaling it to operate on hundreds, thousands, or even tens of thousands of machines within 

a cluster merely requires configuration adjustments. This straightforward scalability is a 

key factor that entices numerous programmers to use this model for distributed processing 

of vast volumes of data. The essence of the MapReduce paradigm lies in directing 

processing tasks to the location of the data itself. This program operates through three 

distinct steps: the map step, the shuffle step, and the reduce step (refer to Figure 4). The 

map step involves processing the input data, typically stored in the Hadoop File System 

(HDFS), presented in the form of a file or directory. The input file is parsed line-by-line 

and sent to the map function for processing, generating multiple smaller data items. 

     The Shuffle step encompasses copying, organizing, and merging the outputs from the 

mappers. This process generates datasets structured as key-value pairs, which subsequently 

undergo processing by the reducer. The Reduce step aggregates the results derived from 

the mappers. Once processed, it generates a fresh output set, which is then stored back into 

the HDFS. Most computations occur on nodes equipped with data stored on local disks, 

effectively minimizing network traffic. Upon completion of data processing tasks, the 

cluster consolidates and condenses the data to produce the desired outcome, sending it back 

to the Hadoop server. Refer to Figure 4 below for a visual representation. 
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Figure 4. Schematic diagram of the MapReduce model 

 As example, we suppose that with four data elements: D = {d1, d2, d3, d4}, we use two 

shuffle keys: {k1, k2}. Having in key mapping: d1 → k1, d2 → k2, d3 → k1, d4 → k2. 

We use a transposed vector of values: v = [2,5,3,7]T, and the following key-assignment 

matrix K=⟦
1  0  1  0
0  1  0  1

⟧,  

the aggregated result will be R = K .v = ⟦
1  0  1  0
0  1  0  1

⟧ ⟦

2
5
3
7

⟧ = ⟦
2 + 3
5 + 7

⟧ = ⟦
5

12
⟧   (7) 

The MapReduce provides as result: total for k1 equal 5 and total for k2 equals 12. 

     The proposed method capitalizes on the advantages offered by the MapReduce 

algorithm in conjunction with the RSOM deep learning model integrated into a single board 

for the control of wind energy generators. This system serves as a parallel processing model 

for handling vast amounts of data, aiming to minimize the time necessary for anomaly 

detection and isolation. Notably, the time required by the RSOM map for anomaly detection 

is notably significant, particularly during the training phase, which in this scenario takes 34 

minutes for processing the three signals; electrical, mechanical and thermal.To tackle this 

challenge, a distributed approach is introduced for processing electrical and mechanical 

signals across multiple RSOM maps, aiding in the detection and isolation of anomalies. 

This approach leverages pipelined information handling for massive data (Big Data), 

employing distributed processing techniques across various RSOM maps, consolidating 

their outputs into a reduced dimension to facilitate fault recognition decisions at the final 

layer.      This solution harnesses the Hadoop MapReduce framework and the RSOM Deep 

Learning approach, significantly improving the detection, isolation, and classification of 

outsourced anomalies within a reasonable real timeframe, particularly during the 

supervision stage. Upon signal processing completion, a distribution of each signal matrix 

occurs to facilitate the analysis and defect detection based on their respective indicators. 

Initially, the submatrices undergo exploitation through mappers, applying the RSOM map 

for anomaly detection. Subsequently, the reducers aggregate this information and generate 

the conclusive catalog of classified and isolated defects. Finally, the outcome is showcased 

on an edge panel for visualization. 
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     The adopted strategy in detecting and isolating anomalies from wind energy generation 

systems revolves around the following Algorithms: 

Algorithm 1.  Map Function 

Require: signals matrix Mi 

Ensure: key/value pairs of sources anomalies 

1: RE𝑖 ←RSOM (Mi) 

2: Ani = Ø 

3: FOREACH Frequency f in REi DO 

4:      IFf != h THEN 

5:          Add f to Ani 

6:     END IF 

7: END FOR 

8:  Emit Intermediate (Sourcei, Ani) 

Algorithm 2. Reduce Function 

Require : set of key/value pairs <source, anomalies> 

Ensure key/value pairs, <source, anomalies> 

1: FOREACH  sourcei DO 

2: Emit Intermediate (Sourcei, anomalies) 

3: END FOR 

4. EXPERIMENTAL RESULTS 

The experimental setup comprises several key components. First, the Wind Energy Generator 

consists of a 12V DC wind turbine used to drive a flow servo mockup. The Control System is 

based on a Siemens S7-1215 PLC, which regulates the system through Digital-to-Analog 

(DAC) and Analog-to-Digital (ADC) converters. This PLC is also equipped with an 

electromechanical flowmeter capable of measuring wind flow rates ranging from 0 to 1.2 knots 

per minute. The Siemens S7-1215 PLC features 14 digital inputs and 10 digital outputs, along 

with 2 analog input channels and 2 analog output channels, each with 12-bit resolution. 

Additionally, an Arduino MEGA board is integrated into the setup, providing 54 digital I/O 

ports, 16 analog inputs via its ADC, and operating with a 16 MHz oscillator. The Arduino is 

powered through either a USB 5V supply or a DC input ranging from 7V to 12V. 

The experimental bench is illustrated in Figure 5. 

 

Figure 5. Photography of the experimental bench 
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Signal measurements at the sensor level of the experimental bench are shown in Figures 7, 9, 

and 10, highlighting abnormalities under nominal operating conditions from various sources. 

Three types of checks are performed: first, a comprehensive examination of the entire wind 

energy generator system, with Figure 6 illustrating the referenced healthy signal. 

 

 
Figure 6. Recording the healthy signal from the wind energy generator system 

 

Following a system fault, the acquired signal state alters as illustrated in figure 7. 
 

 
Figure 7. Recording signal 1 from the malfunctioning wind energy generator over time domain 

The spectral analysis of the flawed signal 1 indicates that the fault manifested at a frequency 

of 12.3 Hz, depicted in figure 8. 

 
Figure 8. Spectrum of signal 1 from faulty wind energy generator (fp = 12.3 Hz) 
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Another inspection targeted the control card to verify the wind energy generator system, with 

Figure 9 showing the status of the acquired flawed signal 2. 

 

Figure 9. Recording signal 2 from the defective control card in the temporal domain 
 

The spectral examination of the flawed signal 2 reveals the fault's occurrence at a frequency of 

62 Hz, as depicted in figure 10. 

 

Figure 10. Spectrum of signal 2 from faulty control card (fe=62 Hz) 

A final examination was performed on the sensor component. Figure 11 illustrates details 

concerning the status of the acquired defective signal 3. 

 

Figure 11. Recording signal 3 from the defective sensor in the temporal domain 

The spectral examination of the flawed signal 3 indicates the fault's occurrence at a 

frequency of 75.6 Hz, as depicted in Figure 12. 
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Figure 12. Spectrum of signal 3 from faulty sensor (fc=75.6 Hz)  

 

While spectral analysis of faults in the wind energy generator system enables the identification 

of fault frequencies, it remains subjective in determining the nature of these faults at this stage. 

It does not necessarily provide insight into the specific type of fault occurring. An objective 

solution consists of involving the RSOM model to target with precision the frequency and 

nature of the analyzed defect. Moreover, its defects are localized by characteristic frequencies, 

thus, defined by: fp characterizes the power generator fault, fe characterizes the control card 

fault and fc characterizes the sensor fault. An unbiased analysis of these defects using the 

RSOM deep learning model provides a genuine representation seen through the topology 

depicted in Figure 13. 

 

Figure 13. Visualization of occurring faults over the RSOM topolog 

The various stages of processing scenario involving the three signals are also outlined in figure 

14 below, demonstrating the fusion of the RSOM model with MapReduce. 

 

 
Figure 14. Implementation of the MapReduce methodoloy 
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As depicted in Algorithm 2 above in section 3, the reducer initiates the process by computing 

the respective anomalies for each source. Given the possibility of multiple pairs having 

identical values, the reducer necessitates sorting them based on increasing frequency and the 

count of anomalies. Ultimately, the reduced function delivers key/value pairs in the format of 

Source, anomalies, where 'Source' denotes a processed signal and 'anomalies' are defined by 

their representative frequency. The subsequent pair serves as an illustration of the output 

yielded by the Collapse function: 

 

Here, the key 1 signal is captured from the process while the value {fp} represents the 

frequency indicating abnormalities. After anomaly isolation and classification, the result will 

be displayed by the dashboard as shown below: 

 

5. RESULTS DISCUSSION 

     The strategy we've employed leverages the collective benefits associated with hybrid delta-

models. In our Wind Energy Generator System, three signals are relayed via sensors for 

monitoring purposes. The initial signal indicates the operational status of the generator, the 

second signal monitors the condition of the generator's control card, and the third signal gauges 

the integrity and reliability of the sensor itself. These signals undergo an initial filtration 

process via map reduce aggregation. Subsequently, the RSOM model, functioning as a 

classifier, executes a secondary selective filtration by analyzing and making decisions 

regarding the identification of potential defects. Figures 6 to 12 present visual representations 

that necessitate subjective assessment relying on human observation, which can potentially 

lead to inaccuracies due to the fallibility of the human eye. Conversely, the proposed method 

relies on rigorously scientific algorithms and mathematical models. This approach enables an 

objective evaluation based on scores and recognition rates facilitated by an intelligent neural 

model, complemented by a clearly defined visualization of outcomes. As depicted in Figure 

13, three faults, labeled as Fp, Fc, and Fe, are discernible by their respective frequencies. 

Additionally, among the 100 neurons on the RSOM map, only one neuron remains unassigned, 

signifying a momentary confusion in decision-making. The remaining neurons are denoted by 

'h', indicating their healthy status. This observation leads to the inference that this model 

achieves a recognition rate of 99%, as there is only one neuron out of 100 that exhibits 

confusion, affirming the model's efficiency compared to other indicated models. As an 

example, empirical findings from statistical models, particularly the HMM model, demonstrate 

a trap failure recognition rate ranging between 80% and 88%, contingent upon the type and 

dataset used. These models are primarily focused on identifying systematic and repetitive 
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defects. Moreover, the employed RSOM Map reduce approach excels in handling substantial 

data volumes for detection through unsupervised learning, as opposed to supervised machine 

learning models. Similarly, the chosen approach is driven by its rapid reaction and response 

time, facilitated by its parallel data processing structure, which operates at 50 µs. This stands 

in contrast to the response time of 17 ms observed when employing Deep Learning models 

with multiple layers of hierarchical neurons. These allocated time results are established based 

on the implementation of this system in real-time applications, particularly in megawatt-scale 

wind turbines. This outcome validates the compatibility and consistency of the chosen delta-

hybridization method, showcasing its robustness against varying environmental conditions. 

This advantage positions it favorably in contrast to simpler existing techniques. Nevertheless, 

it poses a challenge due to the considerable duration required during the learning phase. Once 

the diagnostic model undergoes its learning iterations and is fully adopted, it becomes adept at 

identifying familiar fault types. This capability enables the model to promptly react in real-

time during the testing phase when integrated with the system to be monitored. 

6. CONCLUSION  

     This paper presented an intelligent computational RSOM-MapReduce approach for 

anomaly detection and fault diagnosis in wind energy generation systems. The integration of 

Recurrent Self-Organizing Maps (RSOM) with the MapReduce distributed processing 

paradigm provides a robust and scalable framework capable of handling large volumes of data 

in real-time. The proposed model achieves a fault recognition rate of 99%, significantly 

outperforming traditional statistical and deep learning models in terms of both accuracy and 

efficiency. Its ability to adapt to fluctuating environmental and operational conditions ensures 

reliable performance in the dynamic and complex domain of wind energy systems.  

The experimental results validate the system's effectiveness in detecting and isolating faults 

related to the generator, control card, and sensor components, with a response time of 50 µs, 

which is well-suited for real-time applications in wind turbines. As perspective, the techno-

economic analysis could further highlight the model’s feasibility, demonstrating its cost-

effectiveness, while achieving a 50% reduction in downtime and improving energy production 

by more than 12%, ensuring a high system availability of 99%. The integration of the RSOM 

model with the MapReduce framework not only enhances fault detection and isolation but also 

establishes a foundation for deploying scalable and efficient monitoring systems in large-scale 

wind farms. The system’s compatibility with existing hardware and its potential for parallel 

and distributed processing make it a promising solution for modern wind energy management 

and environmental sustainability. 
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