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Abstract:- This paper investigates a computational intelligence approach using the Recurrent Self-
Organizing Map (RSOM) and its MapReduce framework for anomaly detection in wind energy
generation. Given that wind power represents approximately 25% of the global installed renewable
energy capacity, its reliability is crucial. The proposed methodology leverages an intelligent dynamic
unsupervised deep learning algorithm within a distributed MapReduce processing paradigm to diagnose
and isolate faults in real time across various wind energy sources. The applied computational approach
differs from existing methods by simultaneously analyzing, in adverse environments, multiple signals
acquired in real time for the purpose of intelligent diagnosis of wind turbine systems located in remote
mountainous regions. Signal acquisition and processing were carried out in an experimental setup. The
findings provide insights into its potential benefits, limitations, and economic viability.

Keywords: Wind energy generation, computational MapReduce intelligence; unsupervised deep
learning; distributed processing, anomaly detection

1. INTRODUCTION

Wind energy is one of the fastest growing and most reliable sources of renewable energy,
offering a clean and sustainable alternative to fossil fuels. By harnessing the kinetic energy of
the wind through turbines, wind energy converts natural air movement into electricity without
producing harmful emissions or depleting finite resources. As the world transitions toward
more sustainable energy systems, wind energy plays a critical role in reducing greenhouse gas
emissions, combating climate change, and promoting energy independence. One of the key
advantages of wind energy is its abundance and availability in many regions around the world.
From large onshore wind farms to innovative offshore installations, wind energy systems can
be adapted to diverse environments, making it a versatile and scalable energy solution.
Additionally, advancements in wind turbine technology have significantly improved
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efficiency, reduced costs, and increased the capacity of wind energy, making it more
competitive with traditional energy sources [1], [2].

Beyond its environmental benefits, wind energy contributes to economic growth by creating
jobs in manufacturing, installation, and maintenance, while also reducing reliance on imported
fossil fuels. As a renewable energy source, wind energy is not only an essential component of
a sustainable energy future but also a key driver for achieving global energy security and
resilience.

Due to the need for maximum wind exposure, these systems are often installed in remote
mountainous areas, making maintenance and fault diagnosis challenging [3], [4]. The dynamic
and highly variable nature of the signals captured further complicates anomaly detection. Over
the past decade, various approaches have been developed to improve fault recognition.
Statistical Process Control (SPC) has been widely used, relying on control charts and statistical
thresholds to identify deviations in process variables [5], [6]. Supervised machine learning
techniques, such as decision trees, support vector machines (SVMs), and neural networks
trained on labeled data, have been employed to classify anomalies accurately. In parallel,
unsupervised machine learning methods have emerged, using clustering algorithms like k-
means and DBSCAN, as well as density estimation techniques such as Gaussian Mixture
Models (GMM) and One-Class SVM, to detect anomalies without requiring labeled data [7].
Deep learning has also made significant contributions by leveraging architectures like
autoencoders, Variational Autoencoders (VAEs), and Generative Adversarial Networks
(GANSs) for complex pattern recognition tasks [8], [9]. Additionally, time-series analysis
methods, including ARIMA, exponential smoothing, and state-space models, have been
applied to detect anomalies that evolve over time [10]. More recently, ensemble methods have
gained attention by combining multiple approaches to enhance detection accuracy and
robustness [11]. While effective, these models depend heavily on high-quality training data,
are sensitive to outliers and class imbalances, and may struggle to adapt to environmental
variations. To address these limitations, this paper proposes an intelligent RSOM-MapReduce
approach, integrating Recurrent Self-Organizing Maps (RSOM) convolved with a distributed
processing paradigm. This hybrid method enhances dynamic anomaly detection by
incorporating temporal dependencies and parallel data processing.

The proposed system processes three distinct wind generator signals in two stages: first,

applying RSOM for adaptive pattern recognition and second, leveraging the MapReduce
framework for parallel anomaly isolation. This paper demonstrates the suitability of a recurrent
deep neural network model, investigates its application in wind energy diagnostics, and
evaluates the use of the MapReduce paradigm for distributed fault detection.
Following this introduction, Section 2 provides a comparative review of relevant models
reported in the literature. Section 3 details the proposed methodology developed to tackle the
key challenges in this domain. Section 4 presents the experimental implementation and the
results obtained, while Section 5 offers a thorough analysis and discussion of these findings.

2. REVIEW ON THE INTEGRATED RECURSIVE SOM MODEL

The Recursive SOM (RSOM) is derived from the unsupervised Kohonen SOM algorithm and
was introduced by Thomas Voegtlin, drawing inspiration from Elman's SRN (simple recurrent
network). Elman's SRN modifies the perceptron network by incorporating a hidden layer, usi
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a delayed version of its activities as an additional input. Its primary function is to establish
connections between input and preceding output sequences [12].

In this framework, each neuron is trained to encode a specific pair comprising input and
context. Consequently, the learning process involves iteratively acquiring representations of
longer sequences, building upon the already acquired representations of shorter sequences. The
quantization error can be expressed by the following mathematical model [13]:

E =« Hx(t) -w

By -n-w| 0

In this equation, x(t) and y(t-1) represent, respectively, the input sequence and that of the
context (previous output). Wi is the 'codebook’ reference, or the weight vector associated with
unit i; o and P are stability coefficients.

The network learns by associating the current input with previous states of activity. Therefore,
each neuron becomes responsive to an input sequence, and the BMU is given by [14]:

V=argmin{E, };ie N (2)
The best matching unit vector V is minimizing the Euclidian distance between the input vector

and the weight vector. The learning rules used to update the feed-forward and recurrent weights
are given by [15], [16]:

AW = yh, .(x(t)—w) 3)
and
AW =y, (e =1 =) @)

Given that hiy represents the neighborhood function applied to the RSOM map, the dynamic
nature of recurrent links can lead to unstable representations. To mitigate this instability, one
approach is to apply a transfer function F of the exponential type, empirically chosen to ensure
continuity and constrain its values between 0 and 1.

()= F(E) =exp(-a|xt) - w!|" = Byt -1 -w!|")

)

The concept of employing a transfer function to stabilize the learning process of recursive SOM
originates from its modeling using a single-neuron network. The output state, denoted as Y, is
determined by the transfer function of the sum of input weights [17].

Thomas Voegtlin validated the self-referential algorithm using a two-dimensional recursive
SOM comprising 20x20 neurons. This SOM was trained on “Aldous Huxley's Brave New
World”, an English text where each letter is represented in 5-bit encoding and presented to the
network as individual inputs. Punctuation symbols were excluded from the text, and the neural
activity was reset between consecutive words [18]. The learning rate was constant: y = 0.(Q
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The neighborhood function has a constant size: ¢ = 0.5. Other parameters are chosen: a = 3
and B=0,7.

When the leaky integrators of the unit’s outputs are relocated to the inputs, a modified TKM,
known as the Recurrent Self-Organizing Map (RSOM), is obtained. This adjustment results in
a leaky time-difference vector, defined by the following relation [19], [20]:

yi(t):(1_a)'yi(t_l)+a'(x(t)_wi(t)) (6)

In the equation o, a constant between 0 and 1 designates the leakage coefficient which replaces
d in the temporal Kohonen map (TKM). The d is a time constant between 0 and 1, which
denotes a forgetting term. An RSOM unit is therefore schematized as in Figure 1 below:

Input data x(t) o Output data y(t)
o
l-o z!
-Wie)

Figurel. Representation of an RSOM unit that acts as a recurrent filter

This suggests that a high a value signifies shorter memorization, while a low o value
indicates longer memorization and slower activation decay. When a equals 1, RSOM functions
as a regular SOM, as seen in the equation of the output yi (t) [21]. The incorporation of past
algorithm executions in a recursive manner has been implemented in the Recurrent SOM
(RSOM).

The Kohonen learning algorithm serves two primary purposes. First, it identifies optimal
prototypes that represent the dataset, a process known as vector quantization. Second, it
organizes these prototypes on a map such that nearby prototypes in the data space correspond
to neighboring neurons on the map. This proximity is typically defined either by an Euclidean
metric or by the topological arrangement of neurons that react similarly to input data.This
algorithm is considered efficient: when an individual is exposed to the network, neurons engage
in competition until only one emerges as the winner. The winning neuron possesses the
prototype with the smallest Euclidean distance from the exposed individual. Competitive
learning entails reinforcing the winning neuron, making it more responsive to subsequent
exposures of the same individual. Meanwhile, connection weights are adjusted based on inputs.
Ultimately, neurons in a competitive learning network function as detectors, each aiming to
identify a unique characteristic present in the input data [22]. The victorious neuron from the
competition phase determines the center of a map area termed the "neighborhood," whose size
varies over time. The update or adaptation phase relocates the prototypes to align them with
the input presentations to the network. This algorithm is characterized by several
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parameters. It uses a 10 x 10 neuron grid, providing a map with 100 processing units to
facilitate straightforward percentage-based analysis. The chosen topology is hexagonal,
offering a well-structured and coherent visualization. Training is performed in an unsupervised
manner, making it suitable for handling large volumes of data. Additionally, the algorithm is
set to run for 200 iterations to enable real-time processing.

Hierarchical methods are commonly applied in scenarios requiring the breakdown of a
complex task into several simpler sub-tasks across multiple levels, aiming for more precise
identification outcomes. Each hierarchical level comprises one or multiple RSOM maps, often
delineated by various time scales. The differentiation among current methodologies lies in how
RSOM outcomes from one level are encoded for transition to another. Variations are noted in
the quantity of levels used, the quantity of RSOM units per level, and the interconnections
between these diverse levels. Using of a specific hyperbolic lattice structure significantly
accelerates the search process for larger maps [23], [24]. The growing hierarchical RSOM
(GHRSOM) represents an enhancement to the RSOM map's capabilities in two key aspects.
Firstly, it incorporates an increasingly sophisticated version of RSOM. Secondly, it tailors the
RSOM map to accommodate tree-structured data [25], [26]. Figure 2 illustrates the hierarchical
RSOM architecture in Anomaly detection.

RSOM Mother-

board Anomaly

Detection

¥

I
Anomaly
Classification based

on source Data

-

Agregation and
Anomaly
Classification

Figure 2. Diagram of a hierarchical RSOM variant in anomaly detection

This model comprises two tiers. The initial tier consists of a singular motherboard, RSOM,
responsible for classifying the four anomaly categories: electrical, mechanical, thermal, and
environmental. The subsequent tier encompasses multiple cards dedicated to classifying
anomalies within each category. Notably, the first tier of the hierarchy undergoes
comprehensive learning using the entire dataset of signal segments labeled with macro class
identifiers.
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The RSOM maps in the second tier are trained on segmented datasets, with each card
serving as an independent module. However, a drawback of this hierarchical RSOM structure
is that incorrect classification at the initial level can impact the results in the subsequent level.
To ensure ease in fault recognition rates, the size of the RSOM map at the second level for
recognition purposes is set at 10x10. This model is specifically employed for anomaly
classification at the source of its origin. The fusion in a convolutional way of RSOM and Map
Reduce is implemented within the terminal board of the Wind Energy Generator System
presented by Figure 3. This system is a typical wind energy generation setup designed to
convert wind energy into electrical power and integrate it into the electrical grid. The wind
turbine captures the kinetic energy of the wind and converts it into rotational mechanical energy
through its blades, which are connected to a shaft that drives the generator. The induction
generator (IG) then converts this mechanical energy into electrical energy. Operating
asynchronously, the IG is particularly suitable for variable-speed wind turbines, enabling it to
adapt to fluctuating wind conditions efficiently.

The power converter ensures the generated power. First, the rectifier converts the variable
AC power from the generator into DC, and then the inverter converts the DC power back into
a controlled AC output with stable voltage and frequency. This consistency is crucial for
seamless integration with the grid. The transformer steps up the voltage of the conditioned
power to meet the high-voltage requirements of the grid, ensuring efficient long-distance power
transmission. Finally, the generated electricity is fed into the grid, where synchronization of
voltage, frequency, and phase is achieved through the combined efforts of the power converter
and transformer. This comprehensive system ensures reliable and efficient generation and
delivery of wind energy to consumers.

&Paults
~Tl=/
Oy (H

generator

Power converter Transformer

wind turbine
Figure 3. Power system wind energy generation

To ensure the reliable operation of the wind energy generation system, it is critical to diagnose
faults that may occur within its components. Faults in these systems can arise in various parts,
such as the wind turbine, induction generator, power converter, transformer, or sensors used
for monitoring. These faults, if left undetected, can lead to reduced efficiency, increased
downtime, and even catastrophic failures, compromising the reliability of energy production.
Diagnosing these faults in wind generators is particularly challenging due to the dynamic and
variable nature of wind energy systems, as well as the complexity of signals generated by the
components. This study focuses on developing an advanced fault diagnostic approach for the
wind generator in the presented system, leveraging a hybrid Convolutional RSOM MapRed
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framework. By integrating efficient data processing and intelligent anomaly detection
techniques, the proposed method aims to identify, classify, and isolate faults accurately and in
real time, ensuring the system’s continuous and optimal operation.

3. PROPOSED COMPUTATIONAL RSOM MAPREDUCE MODEL

The MapReduce model operates as a distributed processing paradigm, initially popularized
by Google in its implementation that involved a file system distribution for data exchange.
However, subsequent implementations have surfaced targeting diverse architectures and
communication channels, including shared memory systems or distributed systems with
varied communication protocols. Each MapReduce algorithm incorporates two pivotal
functions: the map function and the reduced function. The map function transforms a
dataset into another dataset, organizing individual elements into grouped pairs (key/value).
Subsequently, the reduced function processes the output of the map function by
consolidating these key-value pairs into a smaller set. The primary advantage of this model
lies in its ease of deploying data processing across multiple computing nodes. Initially
breaking down a data processing application into mappers and reducers might seem
unconventional. However, once an application is built based on the MapReduce paradigm,
scaling it to operate on hundreds, thousands, or even tens of thousands of machines within
a cluster merely requires configuration adjustments. This straightforward scalability is a
key factor that entices numerous programmers to use this model for distributed processing
of vast volumes of data. The essence of the MapReduce paradigm lies in directing
processing tasks to the location of the data itself. This program operates through three
distinct steps: the map step, the shuffle step, and the reduce step (refer to Figure 4). The
map step involves processing the input data, typically stored in the Hadoop File System
(HDEFS), presented in the form of a file or directory. The input file is parsed line-by-line
and sent to the map function for processing, generating multiple smaller data items.

The Shuffle step encompasses copying, organizing, and merging the outputs from the
mappers. This process generates datasets structured as key-value pairs, which subsequently
undergo processing by the reducer. The Reduce step aggregates the results derived from
the mappers. Once processed, it generates a fresh output set, which is then stored back into
the HDFS. Most computations occur on nodes equipped with data stored on local disks,
effectively minimizing network traffic. Upon completion of data processing tasks, the
cluster consolidates and condenses the data to produce the desired outcome, sending it back
to the Hadoop server. Refer to Figure 4 below for a visual representation.

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com




< v~ Power System Technology

~
)

/Y~ 1SSN:1000-3673

:

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 02-10-2025
Inputs £l 1 g (TWET Outputs
Map ¥ |K2 V2 Kl |v3 —
K1 |v3 Kl |V5
Ty
 m— Ka irs f values
= Y pa
) Map A ey P p—
o o \‘:..uz vd k2 |vz ° °
. co . mfwl Lelw o e
5] @ I a

Intermediate outputs

Figure 4. Schematic diagram of the MapReduce model

As example, we suppose that with four data elements: D = {d1, d2, d3, d4}, we use two
shuffle keys: {kl, k2}. Having in key mapping: di — ki, d> — ka, d3 — ki, ds — ko.
We use a transposed vector of values: v = [2,5,3,7]", and the following key-assignment

matrix KZ[[(I) (1) (1) (ﬂ],
2

the aggregated result willbe R=K .v= [[é 2 é (1)]] g = [[g i g]] = H152]] (7)
7

The MapReduce provides as result: total for ki equal 5 and total for k, equals 12.

The proposed method capitalizes on the advantages offered by the MapReduce
algorithm in conjunction with the RSOM deep learning model integrated into a single board
for the control of wind energy generators. This system serves as a parallel processing model
for handling vast amounts of data, aiming to minimize the time necessary for anomaly
detection and isolation. Notably, the time required by the RSOM map for anomaly detection
is notably significant, particularly during the training phase, which in this scenario takes 34
minutes for processing the three signals; electrical, mechanical and thermal.To tackle this
challenge, a distributed approach is introduced for processing electrical and mechanical
signals across multiple RSOM maps, aiding in the detection and isolation of anomalies.
This approach leverages pipelined information handling for massive data (Big Data),
employing distributed processing techniques across various RSOM maps, consolidating
their outputs into a reduced dimension to facilitate fault recognition decisions at the final
layer.  This solution harnesses the Hadoop MapReduce framework and the RSOM Deep
Learning approach, significantly improving the detection, isolation, and classification of
outsourced anomalies within a reasonable real timeframe, particularly during the
supervision stage. Upon signal processing completion, a distribution of each signal matrix
occurs to facilitate the analysis and defect detection based on their respective indicators.
Initially, the submatrices undergo exploitation through mappers, applying the RSOM map
for anomaly detection. Subsequently, the reducers aggregate this information and generate
the conclusive catalog of classified and isolated defects. Finally, the outcome is showcased
on an edge panel for visualization.
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The adopted strategy in detecting and isolating anomalies from wind energy generation
systems revolves around the following Algorithms:

Algorithm 1. Map Function
Require: signals matrix Mi
Ensure: key/value pairs of sources anomalies
1: REi «<RSOM (Mi)
2: Ani=0
3: FOREACH Frequency fin RE; DO
4: IFf!=h THEN
5: Add f'to An;
6: ENDIF
7: END FOR
8: Emit Intermediate (Source;, An;)
Algorithm 2. Reduce Function
Require : set of key/value pairs <source, anomalies>
Ensure key/value pairs, <source, anomalies>
1: FOREACH source;DO
2:  Emit Intermediate (Source;, anomalies)
3: END FOR

4. EXPERIMENTAL RESULTS

The experimental setup comprises several key components. First, the Wind Energy Generator
consists of a 12V DC wind turbine used to drive a flow servo mockup. The Control System is
based on a Siemens S7-1215 PLC, which regulates the system through Digital-to-Analog
(DAC) and Analog-to-Digital (ADC) converters. This PLC is also equipped with an
electromechanical flowmeter capable of measuring wind flow rates ranging from 0 to 1.2 knots
per minute. The Siemens S7-1215 PLC features 14 digital inputs and 10 digital outputs, along
with 2 analog input channels and 2 analog output channels, each with 12-bit resolution.
Additionally, an Arduino MEGA board is integrated into the setup, providing 54 digital I/O
ports, 16 analog inputs via its ADC, and operating with a 16 MHz oscillator. The Arduino is
powered through either a USB 5V supply or a DC input ranging from 7V to 12V.

The experimental bench is illustrated in Figure 5.

Wind energy source
= e BB

Generator I \'_

Controlled by a PLC $7-1215
sA

Arduino MEGA card

Figure 5. Photography of the experimental bench

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com




= i Power System Technology

ISSN:1000-3673

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 02-10-2025

Signal measurements at the sensor level of the experimental bench are shown in Figures 7, 9,
and 10, highlighting abnormalities under nominal operating conditions from various sources.
Three types of checks are performed: first, a comprehensive examination of the entire wind
energy generator system, with Figure 6 illustrating the referenced healthy signal.

Healthy system response
T T T T

X(t)

) i 1 i i i i 1 i i
o 5 10 15 20 25 30 35 40 as 50

t (milliseconds)

Figure 6. Recording the healthy signal from the wind energy generator system

Following a system fault, the acquired signal state alters as illustrated in figure 7.

x 1023 sensor response

sensor response
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50 100 150 200 250 300 350 400 450 500
time (ms)

Figure 7. Recording signal 1 from the malfunctioning wind energy generator over time domain

The spectral analysis of the flawed signal 1 indicates that the fault manifested at a frequency
of 12.3 Hz, depicted in figure 8.

x 1072

Magnitude

25
Frequency (Hz)

Figure 8. Spectrum of signal 1 from faulty wind energy generator (f, = 12.3 Hz)
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Another inspection targeted the control card to verify the wind energy generator system, with
Figure 9 showing the status of the acquired flawed signal 2.

Faulty control board response
T T T T T
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Figure 9. Recording signal 2 from the defective control card in the temporal domain

The spectral examination of the flawed signal 2 reveals the fault's occurrence at a frequency of
62 Hz, as depicted in figure 10.

T Y 13 T T T T T T

30 40 50 60 70 80 90 100 110

Figure 10. Spectrum of signal 2 from faulty control card (f-=62 Hz)

A final examination was performed on the sensor component. Figure 11 illustrates details
concerning the status of the acquired defective signal 3.

Defective sensor response
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Figure 11. Recording signal 3 from the defective sensor in the temporal domain
The spectral examination of the flawed signal 3 indicates the fault's occurrence at a
frequency of 75.6 Hz, as depicted in Figure 12.
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Figure 12. Spectrum of signal 3 from faulty sensor (f=75.6 Hz)

While spectral analysis of faults in the wind energy generator system enables the identification
of fault frequencies, it remains subjective in determining the nature of these faults at this stage.
It does not necessarily provide insight into the specific type of fault occurring. An objective
solution consists of involving the RSOM model to target with precision the frequency and
nature of the analyzed defect. Moreover, its defects are localized by characteristic frequencies,
thus, defined by: fp characterizes the power generator fault, fe characterizes the control card
fault and fc characterizes the sensor fault. An unbiased analysis of these defects using the
RSOM deep learning model provides a genuine representation seen through the topology
depicted in Figure 13.

Figure 13. Visualization of occurring faults over the RSOM topolog

The various stages of processing scenario involving the three signals are also outlined in figure
14 below, demonstrating the fusion of the RSOM model with MapReduce.
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Figure 14. Implementation of the MapReduce methodoloy
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As depicted in Algorithm 2 above in section 3, the reducer initiates the process by computing
the respective anomalies for each source. Given the possibility of multiple pairs having
identical values, the reducer necessitates sorting them based on increasing frequency and the
count of anomalies. Ultimately, the reduced function delivers key/value pairs in the format of
Source, anomalies, where 'Source' denotes a processed signal and 'anomalies' are defined by
their representative frequency. The subsequent pair serves as an illustration of the output
yielded by the Collapse function:

<signall ; {[p}>

Here, the key 1 signal is captured from the process while the value {fp} represents the
frequency indicating abnormalities. After anomaly isolation and classification, the result will
be displayed by the dashboard as shown below:

<signaly, fp }> assigned to a fault in wind generator.
<signaly, fe }> assigned to a fault in control card.

<signals, fc }> assigned to a fault in sensor.

5. RESULTS DISCUSSION

The strategy we've employed leverages the collective benefits associated with hybrid delta-
models. In our Wind Energy Generator System, three signals are relayed via sensors for
monitoring purposes. The initial signal indicates the operational status of the generator, the
second signal monitors the condition of the generator's control card, and the third signal gauges
the integrity and reliability of the sensor itself. These signals undergo an initial filtration
process via map reduce aggregation. Subsequently, the RSOM model, functioning as a
classifier, executes a secondary selective filtration by analyzing and making decisions
regarding the identification of potential defects. Figures 6 to 12 present visual representations
that necessitate subjective assessment relying on human observation, which can potentially
lead to inaccuracies due to the fallibility of the human eye. Conversely, the proposed method
relies on rigorously scientific algorithms and mathematical models. This approach enables an
objective evaluation based on scores and recognition rates facilitated by an intelligent neural
model, complemented by a clearly defined visualization of outcomes. As depicted in Figure
13, three faults, labeled as Fp, Fc, and Fe, are discernible by their respective frequencies.
Additionally, among the 100 neurons on the RSOM map, only one neuron remains unassigned,
signifying a momentary confusion in decision-making. The remaining neurons are denoted by
'h', indicating their healthy status. This observation leads to the inference that this model
achieves a recognition rate of 99%, as there is only one neuron out of 100 that exhibits
confusion, affirming the model's efficiency compared to other indicated models. As an
example, empirical findings from statistical models, particularly the HMM model, demonstrate
a trap failure recognition rate ranging between 80% and 88%, contingent upon the type and
dataset used. These models are primarily focused on identifying systematic and repetitiv
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defects. Moreover, the employed RSOM Map reduce approach excels in handling substantial
data volumes for detection through unsupervised learning, as opposed to supervised machine
learning models. Similarly, the chosen approach is driven by its rapid reaction and response
time, facilitated by its parallel data processing structure, which operates at 50 ps. This stands
in contrast to the response time of 17 ms observed when employing Deep Learning models
with multiple layers of hierarchical neurons. These allocated time results are established based
on the implementation of this system in real-time applications, particularly in megawatt-scale
wind turbines. This outcome validates the compatibility and consistency of the chosen delta-
hybridization method, showcasing its robustness against varying environmental conditions.
This advantage positions it favorably in contrast to simpler existing techniques. Nevertheless,
it poses a challenge due to the considerable duration required during the learning phase. Once
the diagnostic model undergoes its learning iterations and is fully adopted, it becomes adept at
identifying familiar fault types. This capability enables the model to promptly react in real-
time during the testing phase when integrated with the system to be monitored.

6. CONCLUSION

This paper presented an intelligent computational RSOM-MapReduce approach for
anomaly detection and fault diagnosis in wind energy generation systems. The integration of
Recurrent Self-Organizing Maps (RSOM) with the MapReduce distributed processing
paradigm provides a robust and scalable framework capable of handling large volumes of data
in real-time. The proposed model achieves a fault recognition rate of 99%, significantly
outperforming traditional statistical and deep learning models in terms of both accuracy and
efficiency. Its ability to adapt to fluctuating environmental and operational conditions ensures
reliable performance in the dynamic and complex domain of wind energy systems.

The experimental results validate the system's effectiveness in detecting and isolating faults
related to the generator, control card, and sensor components, with a response time of 50 us,
which is well-suited for real-time applications in wind turbines. As perspective, the techno-
economic analysis could further highlight the model’s feasibility, demonstrating its cost-
effectiveness, while achieving a 50% reduction in downtime and improving energy production
by more than 12%, ensuring a high system availability of 99%. The integration of the RSOM
model with the MapReduce framework not only enhances fault detection and isolation but also
establishes a foundation for deploying scalable and efficient monitoring systems in large-scale
wind farms. The system’s compatibility with existing hardware and its potential for parallel
and distributed processing make it a promising solution for modern wind energy management
and environmental sustainability.
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