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Abstract:- The surge in electricity demand has necessitated exploring alternative power generation
sources, moving beyond the traditional reliance on fossil fuels. This transition is driven by dwindling
fossil fuel reserves, energy shortages, and environmental issues, emphasizing the importance of
electric transport as the future of transportation. Electric transport serves as distributed storage units
and loads when connected to the grid, but their increasing use introduces new challenges for power
quality and grid constancy. The fluctuating behavior of renewable energy and volatile load demands
require effective energy storage solutions within the smart grid. Grid able vehicles offer a viable
option as storage devices. The proposed model, tested using the Mother Optimization Algorithm
(MOA), demonstrates substantial reductions in fuel costs, achieving a significant cost reduction of
19%.
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1. Introduction

The electrical power industry has experienced various financial challenges, leading
governments to promote the utilization of alternative energy sources. This shift is driven by
the increasing cost for fossil fuels, their declining reserves, and the rising emissions of
greenhouse gases. Researchers are exploring diverse green sources of energy and effective
measures to substitute the increasingly diminishing non-renewable sources. Plugged-in
electric transport, which combines features of plugged-in hybrid electric transport and electric
transport with vehicle to grid (V2G) capabilities, appears as a promising resolution to the
issue of emissions. The integration of electric vehicles can substantially lower carbon
emissions and mitigate reliance on conventional fuels [1]. The influence of plug-in electric
vehicles on the overall economics and emissions of the electrical system is comprehensively
analyzed in [2].

The author has detailed the impact of incorporating plugged-in electric transport to the grid
for both auxiliary backup and charging functions [3]. The IEEE standards [4] provide an in-
depth discussion on renewable sources and plugged-in hybrid electric automobile. The [5]
examines the effects of plug-in electric vehicles and plug-in hybrid electric vehicles on
electricity systems, and the insertion of renewable sources into these structures. Studies show
a great deal of interest in and attention to the possible services that electric vehicles may
provide to the present power system [6-7]. Although electrically powered automobiles might
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offer several advantages, they can also add to the system's burden and put further stress on
the grid.

The extensive uptake of electric vehicles has introduced various additional challenges with
issues for the electrical grid, with security concerns being among the most prominent. These
challenges also impact on the economic dynamics of the current electricity system [8].

The impact of electric automobile load to the grid has been examined across various domains,
altering overall grid load capacity [9-10], impacting power quality upon integration [11],
economic implications of EVs connecting to the grid, and environmental effects stemming
from EV usage [12].

The shortcomings in the economic dispatch of electric vehicles primarily revolve around the
integration challenges within existing grid frameworks. These gaps include the need for
enhanced algorithms that can effectively manage the variable and unpredictable charging
patterns of electric vehicles to optimize energy dispatch. Additionally, it is necessary for
methodologies that can balance the economic benefits of using electric vehicles as flexible
loads with the potential strain they might impose on the grid. Addressing these gaps requires
innovative approaches in modeling, optimization techniques, and grid management strategies
to ensure efficient and sustainable integration of electric vehicles into the broader energy
ecosystem.

These gaps in economic dispatch for electric vehicles can be addressed through the MOA by
leveraging its ability to handle complex, non-linear optimization problems. Mother's
algorithm excels in optimizing systems with variable and unpredictable inputs. It can
dynamically adjust strategies to balance economic benefits and grid stability, ensuring
efficient dispatch of energy resources. By incorporating advanced modeling techniques and
optimization strategies.

This work is novel in its approach to optimizing the economic dispatch of electric vehicles,
focusing specifically on developing tailored methodologies. It introduces innovative
strategies to handle the variability of electric vehicles charging and discharging patterns and
their impact, aiming to maximize economic benefits while ensuring sustainable integration.
The MOA technique has not been formerly applied to any dispatch problem. This study
contributes a comprehensive analysis of the economic dispatch framework applied
specifically to electric vehicles. We propose novel methodologies and algorithms tailored for
minimizing amalgamation of electric vehicles into the power grid, addressing their unique
implication patterns and impacts on grid stability. The research explores advanced modeling
optimization strategies aimed at maximizing the economic benefits of electric vehicles as
flexible loads while minimizing their strain on the grid. Additionally, we investigate the
environmental and economic implications of electric vehicles integration, providing insights
into sustainable energy management practices.

In this paper, we utilize the MOA algorithm to address the dispatch problem. Section 2

provides an overview of the MOA method. The formulation of the dispatch problem is
detailed in Section 3, continued by a discussion of the numerical tests and results using the
MOA in Section 4. Eventually, the conclusion is drawn in section 5.
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2. Mothers Optimization Algorithm

The MOA [13] is a new metaheuristic method driven by the interaction between a female
parent and her child, focusing on learning, guidance, and nurturing. The numerical prototype
of the procedure is presented for search and exploration.

2.1 Mathematical description of MOA

The technique considered here is a population-oriented optimization method that addresses
problems iteratively. The population created comprises of candidate explication and are
vectors in the problem range. The initial population is created using Eq. (1) in the beginning
of the procedure. Each component represents decision variable based on its search space
position, leveraging the population's collective search ability to discover the optimal solution.

M;; = Lb; + Rand(0,1) x (Ub; — Lbj) HereI = 1,2, ......Nand] = 1,2, ......K (1)
In the proposed MOA, M illustrates the population matrix, N portrays population count, and
K denotes the count for deciding parameters. LbJ and UbJ are the lower and upper
confinements for deciding parameters, respectively.

The MOA updates its population in three phases, modeled on the interactions of a mother
raising children, as detailed below.

2.1.1 Learning Level I: The first phase, called learning, in the MOA approach enhances
global search and exploration by significantly altering population member positions. The best
member, representing the mother, guides this phase. New positions are generated using Eq.
(2), and if the target function value improves, the new positions are updated as per Eq. (3).

Mf]l = My, + (Rand(0,1)) * (MO; — Rand(2) * My ;) )
pl p1

M, = MP', FP! < F, G
M;, Else

Where MOJ represents the Jth attribute of the mother's location, MI, J denotes, Jth dimension
for the Ith population member's position MI, MIpl is the renewed position in the first phase
of the MOA. MI, Jpl is the Jth attribute, FIp1 is its criterion function, Rand (0,1) produces
random numbers amidst 0 and 1, and Rand (2) create numbers randomly in the set (1, 2).

2.1.2 Guidance Level II: The phase two of the MOA, inspired by a mother's role in
counseling children to prevent misbehavior, the guidance phase enhances global search and
exploration by significantly altering population members positions. Any member with a
superior target function value than another is deemed to display undesirable behavior that
should be avoided. The set of undesirable behaviors is identified using Eq. (4), and for each
MI, a member is randomly chosen from this arrangement. A new position is generated using
Eq. (5) to avoid undesirable behavior, and if it enhances the objective function value, it
replaces the previous position, as specified by Eq. (6).

BadB; = {Mg, Fx > FjaK € {1,2, ... ... N}} Wherel = 1,2, .....N 4)
MP? = My + (Rand(0,1)) * (M;; — Rand(2) * SBadB ) (5)
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M; = {MFZ' o ©)
M;, Else

Where BadB; is the group of vile behaviors for the Ith inhabitant, SBadBI is the choosen evil

behavior for the Ith member, and SBadBy; is its Jth attribute, MIP? is the new position

evaluated for the Ith member in step II. MI, Jp2 is the Jth attribute, FIp2 is its object function,

Rand (0,1) creates a random number amidst 0 and 1, and Rand (2) yields random number

from the set (1, 2).

2.1.3 Nurture Level III: Mothers use encouragement to help children upgrade their skills. In
MOA, the raising phase enhances localized search and exploitation by making little
adjustments to positions. A new location is created for each component using Eq. (7), and if
the goal function value enhances, it replaces previous location, as specified in Eq. (8).

MPS =My + (1 -2 % Rand(0,1)), 2= (7)
M, = MP®, FP? < F ()
M;, Else

Where MIp3 is the latest position obtained for the Ith member depending on third step of the
MOA, MLJp3 is its Jth dimension, FIp3 is its goal function value, the function rand (0, 1)
produces random numbers in the interval (0, 1), and T is the count of iteration. After
iterations, members are updated depending on steps from 1 to 3 using Eqgs. (2) to (8) till the
concluding iteration. The best solution is consistently updated and stored throughout the
process. Upon completion, MOA provides the best candidate solution.

3. Problem Definition

Besides traditional thermal generators, the smart grid incorporates grid vehicles such as plug-
in hybrid electric vehicles and electric vehicles, along with renewable sources like solar and
wind power. Green energy sources are essential for lowering emissions and operational costs
alongside thermal generators. The grid vehicles function as distributed storage devices to
assist in load balancing. An optimization method integrates all these sources, including grid
vehicles, to set an efficient schedule aimed at reducing expenses and emissions.

3.1 Modeling of Thermal Generators: The primary objective of economic load dispatch is
to minimize the expense of generation. The generation cost of thermal generators is
calculated using the following expression in Eq. (9).

NT
FGC = X5, AP +BPp +C 9)
Where FGC represents the final generation cost, NTg denotes the total number of thermal
generators, and A, B, C are coefficient specification upsetting the generation cost. PTG is the

active power generated by thermal generators.

3.2 Electrical Vehicle Modeling: In smart micro grid operations, electric vehicles serve
multiple roles as energy sources, storage units, and loads. Balancing economic efficiency an
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emissions reduction becomes challenging when managing the charging and discharging
cycles of electric vehicles. This study models electric vehicles both as loads and energy

resources based on apex and off-peak hours. Considering power balance criteria and the
effect of incorporating electric automobiles into the network, the following equations will
represent electric automobile as both sources in Eq. (10) and loads in Eq. (11).

Z¥g=g1 PTg (t) + Zgggl PIEV (t)((bpre - (bdep) = LD(t) (10)
Z¥g§1 l:)Tg (t) = LD(t) + Zgggl EVPIEV (t)(®pre - (Ddep) (1 1)
Tt NEv(t) = NEy™ma (12)

Where NEv(t) represents the count of electric transport coupled to the grid at time t, Px®¥(t) is
the power of the Kth vehicle, ppre / ¢dep denotes the charge/discharge state of the electric
vehicles battery, 1 the efficiency of the system, and NEvmax, is the maximum number of
electric transports utilized during the entire time.

3.3 Solar and Wind Energy System: In economic dispatch, the cost functions for solar and
wind energy is typically defined differently from those of conventional thermal generators.
Solar Energy Cost Function: The price of solar energy generation is often considered minimal
because it primarily involves capital costs and very low operational costs. The cost function
can be exhibited as a fixed cost per unit of energy generated.

Csolar = Crixed X Psolar (13)

Where Csolar 1s the price of solar energy, CFixed is the fixed cost per unit of solar energy,
and Psolar 1s the power generated by solar panels.

Wind Energy Cost Function: Similar to solar, the price of wind energy is mainly composed of
capital costs and low operational costs. The cost function can also be explicit as a fixed cost
per unit of energy generated:

Cwind = Crixed X Pwind (14)

Cwina depicts price of wind power, Crixed represents fixed cost per unit of wind power, and
PWind is the power generated by wind turbines. In economic dispatch, green sources like sun
and wind are often treated with zero or minimal marginal costs due to their negligible
variable operating expenses. This makes them highly preferable for integration into the grid
to reduce overall generation costs and emissions.
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4. Result Analysis

In this study, 50000 electric automobiles are integrated into a 6-unit thermal generator system
as detailed in [14]. The generator constants and dynamic load dataset are sourced with [14],
provided in Table I. Each 50000 electric automobiles charges and discharges once per day,
within a 24-hour period. The electric vehicle specification is referred from [14]. Three

different cases have been analyzed to review the impact of electric vehicles and renewable
energy on the system and to evaluate the versatility of the algorithm. These cases incorporate
various combinations to provide a comprehensive analysis.

Table 1: Techno Economical Specification of Thermal Generators
Parameters/TG | TG1 | TG2 TG3 | TG4 | TGS | TG6

A ($) 240.0 | 200 220 200 220 190
B($/MW) 7.00 |10.00 | &850 |11.00 | 10.50 |12.00
C($/MW2) 0.007 | 0.0095 | 0.009 | 0.009 | 0.008 | 0.0075

Power Min. 100.0 | 50.0 80.0 |50.0 |50.0 |50.0
Power Max. 500.0 | 200.0 | 300.0 | 150.0 | 200.0 | 120.0
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Fig. 1 Solar and Wind power generation throughout a day

4.1 Case type I: In this scenario, thermal generators and renewable energy sources
collaborate to match the required load demand. The MOA is applied to a 6-unit thermal
system, and its performance is equated to that of the Chimp Optimization Algorithm. The
evaluation shows that the fuel consumption cost using MOA is $296,489.63 per day. Figure 2
illustrates the distribution of power generation among the six generators, highlighting the
effectiveness of MOA in balancing the power output across the system.

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com




Power System Technology

ISSN:1000-3673

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 12-10-2025
600 -
500
g —TG1
R —1G3
= 300 - —1G3
o —Tc4
B 200 —TG5
= 100 - —TG6
e — ——Solar Gen.
i B T T ind Gen

1 3:35 7 9 1 13151719 21 23

Time in Hrs.

Fig. 2 Economic Dispatch of generators and renewable sources

4.2 Case type II: In the second case, the system consists of thermal generators and electric
vehicles, with the electric vehicles acting solely as loads. No renewable energy sources are
included in this scenario. Here, electric vehicles contribute to the overall requirement of the
network. The fuel combustion cost for this setup is $332,551.50 per day. Figure 3 provides a
detailed view of how power is distributed among the generators and the electric vehicles,
demonstrating the strike of incorporating electric automobiles as loads on the microgrid
performance and cost.
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Fig. 3 Economic Dispatch of Generators and Renewable Sources

4.3 Case type III: In the third case, thermal generators, renewable energy sources, and
electric automobiles collectively meet the total demand. Here, electric vehicles function as
both loads and sources. As demonstrated in Figure 4, electric vehicles act as sources during
peak periods and as loads during off-peak periods. The combustion cost in this scenario is
$30,4324.34 per day. Although plugged-in electric automobiles are seen as a viable answer to
emissions, the study demonstrates that total cost of operation increases with pluggeda
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electric automobiles in the system due to their energy consumption, which leads to higher
fossil fuel use. However, the inclusion of V2G technology provides only marginal benefits
compared to systems without plugged-in electric automobiles. The overall cost also rises with
increased power generation.
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Fig. 4 Economic Dispatch of generators, electric vehicle and renewable sources

All the above three cases evaluated through MOA, are analyzed with the outcomes of Chimp
optimization algorithm and are depicted in Table 2. It can be observed that the results
obtained from MOA have outperformed in comparison to chimp optimization algorithm.

Table 2. Comparative Cost Analysis of Algorithms

Technique Used | Thermal Gen.+ Thermal Gen. + Ren. | Thermal Gen.+ Electric

Electric Veh. Sources Veh. + Ren. Sources
Chimp OA 397294.10 316498.35 326625.6
Mothers OA 332551.5 296489.63 304324.34
(Proposed)

5. Conclusion

In this investigation, the dynamic load dispatch issue has been effectively addressed using the
MOA. The proposed algorithm was tested on 6-unit generator systems integrated with
electric vehicles, renewable sources, and a combination of both. The results demonstrated
that the MOA significantly reduced generation costs compared to scenarios without EVs and
renewable sources. Furthermore, the MOA outperformed the Chimp Optimization Algorithm
in terms of cost efficiency, achieving cost reductions of 19.46%, 7.328%, and 6.74%. The
findings indicated that the MOA successfully achieved efficient load distribution at a cost-
effective rate.

The primary limitations of these studies stem from the assumptions that grid vehicles will
always discharge when required by the grid and that the lifespan of a grid able vehicle battery
follows a simple linear relationship with its charging/discharging cycles. Although these
assumptions might be plausible in an ideal scenario, they are impractical for several reasons
as grid able vehicle performance depends on battery quality, with longevity determined by its

Volume 49 Issue 4 (October 2025)
https://powertechjournal.com



.= Power System Technology

/Y ISSN:1000-3673

Received: 16-08-2025 Revised: 05-09-2025 Accepted: 12-10-2025

left-over capability after recurrent use as both a contributor and user. The battery
maintenance cost is very high and is affected by the rate at which its capacity degrades.

The proposed MOA approach facilitates various research opportunities for future
investigations. A particularly promising area of research comes to the expansion of binary
and multi-faceted versions of the proposed method. Additionally, this powerful algorithm can
be applied to solve multi-dimensional dynamic dispatch problems in electrical grids,
highlighting its versatility and effectiveness.
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