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Abstract:- The surge in electricity demand has necessitated exploring alternative power generation 

sources, moving beyond the traditional reliance on fossil fuels. This transition is driven by dwindling 

fossil fuel reserves, energy shortages, and environmental issues, emphasizing the importance of 

electric transport as the future of transportation. Electric transport serves as distributed storage units 

and loads when connected to the grid, but their increasing use introduces new challenges for power 

quality and grid constancy. The fluctuating behavior of renewable energy and volatile load demands 

require effective energy storage solutions within the smart grid. Grid able vehicles offer a viable 

option as storage devices. The proposed model, tested using the Mother Optimization Algorithm 

(MOA), demonstrates substantial reductions in fuel costs, achieving a significant cost reduction of 

19%. 
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1. Introduction 

The electrical power industry has experienced various financial challenges, leading 

governments to promote the utilization of alternative energy sources. This shift is driven by 

the increasing cost for fossil fuels, their declining reserves, and the rising emissions of 

greenhouse gases. Researchers are exploring diverse green sources of energy and effective 

measures to substitute the increasingly diminishing non-renewable sources. Plugged-in 

electric transport, which combines features of plugged-in hybrid electric transport and electric 

transport with vehicle to grid (V2G) capabilities, appears as a promising resolution to the 

issue of emissions. The integration of electric vehicles can substantially lower carbon 

emissions and mitigate reliance on conventional fuels [1]. The influence of plug-in electric 

vehicles on the overall economics and emissions of the electrical system is comprehensively 

analyzed in [2].  

The author has detailed the impact of incorporating plugged-in electric transport to the grid 

for both auxiliary backup and charging functions [3]. The IEEE standards [4] provide an in-

depth discussion on renewable sources and plugged-in hybrid electric automobile. The [5] 

examines the effects of plug-in electric vehicles and plug-in hybrid electric vehicles on 

electricity systems, and the insertion of renewable sources into these structures. Studies show 

a great deal of interest in and attention to the possible services that electric vehicles may 

provide to the present power system [6-7]. Although electrically powered automobiles might  
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offer several advantages, they can also add to the system's burden and put further stress on 

the grid. 

The extensive uptake of electric vehicles has introduced various additional challenges with 

issues for the electrical grid, with security concerns being among the most prominent. These 

challenges also impact on the economic dynamics of the current electricity system [8]. 

The impact of electric automobile load to the grid has been examined across various domains, 

altering overall grid load capacity [9-10], impacting power quality upon integration [11], 

economic implications of EVs connecting to the grid, and environmental effects stemming 

from EV usage [12]. 

The shortcomings in the economic dispatch of electric vehicles primarily revolve around the 

integration challenges within existing grid frameworks. These gaps include the need for 

enhanced algorithms that can effectively manage the variable and unpredictable charging 

patterns of electric vehicles to optimize energy dispatch. Additionally, it is necessary for 

methodologies that can balance the economic benefits of using electric vehicles as flexible 

loads with the potential strain they might impose on the grid. Addressing these gaps requires 

innovative approaches in modeling, optimization techniques, and grid management strategies 

to ensure efficient and sustainable integration of electric vehicles into the broader energy 

ecosystem. 

These gaps in economic dispatch for electric vehicles can be addressed through the MOA by 

leveraging its ability to handle complex, non-linear optimization problems. Mother's 

algorithm excels in optimizing systems with variable and unpredictable inputs. It can 

dynamically adjust strategies to balance economic benefits and grid stability, ensuring 

efficient dispatch of energy resources. By incorporating advanced modeling techniques and 

optimization strategies.  

This work is novel in its approach to optimizing the economic dispatch of electric vehicles, 

focusing specifically on developing tailored methodologies. It introduces innovative 

strategies to handle the variability of electric vehicles charging and discharging patterns and 

their impact, aiming to maximize economic benefits while ensuring sustainable integration. 

The MOA technique has not been formerly applied to any dispatch problem. This study 

contributes a comprehensive analysis of the economic dispatch framework applied 

specifically to electric vehicles. We propose novel methodologies and algorithms tailored for 

minimizing amalgamation of electric vehicles into the power grid, addressing their unique 

implication patterns and impacts on grid stability. The research explores advanced modeling 

optimization strategies aimed at maximizing the economic benefits of electric vehicles as 

flexible loads while minimizing their strain on the grid. Additionally, we investigate the 

environmental and economic implications of electric vehicles integration, providing insights 

into sustainable energy management practices.  

In this paper, we utilize the MOA algorithm to address the dispatch problem. Section 2 

provides an overview of the MOA method. The formulation of the dispatch problem is 

detailed in Section 3, continued by a discussion of the numerical tests and results using the 

MOA in Section 4. Eventually, the conclusion is drawn in section 5. 
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2. Mothers Optimization Algorithm 

The MOA [13] is a new metaheuristic method driven by the interaction between a female 

parent and her child, focusing on learning, guidance, and nurturing. The numerical prototype 

of the procedure is presented for search and exploration.  

2.1 Mathematical description of MOA 

The technique considered here is a population-oriented optimization method that addresses 

problems iteratively. The population created comprises of candidate explication and are 

vectors in the problem range. The initial population is created using Eq. (1) in the beginning 

of the procedure. Each component represents decision variable based on its search space 

position, leveraging the population's collective search ability to discover the optimal solution. 

MI,J = LbJ + Rand(0,1) × (UbJ − LbJ) Here I = 1, 2, … … . N and J = 1,2, … … . K  (1) 

In the proposed MOA, M illustrates the population matrix, N portrays population count, and 

K denotes the count for deciding parameters. LbJ and UbJ are the lower and upper 

confinements for deciding parameters, respectively. 

The MOA updates its population in three phases, modeled on the interactions of a mother 

raising children, as detailed below. 

 

2.1.1 Learning Level I: The first phase, called learning, in the MOA approach enhances 

global search and exploration by significantly altering population member positions. The best 

member, representing the mother, guides this phase. New positions are generated using Eq. 

(2), and if the target function value improves, the new positions are updated as per Eq. (3). 

MI,J
p1

= MI,J + (Rand(0,1)) ∗ (MOJ − Rand(2) ∗ MI,J)      (2) 

MI = {
MI

p1
, FI

p1 < FI

MI, Else
          (3) 

Where MOJ represents the Jth attribute of the mother's location, MI, J denotes, Jth dimension 

for the Ith population member's position MI, MIp1 is the renewed position in the first phase 

of the MOA. MI, Jp1 is the Jth attribute, FIp1 is its criterion function, Rand (0,1) produces 

random numbers amidst 0 and 1, and Rand (2) create numbers randomly in the set (1, 2). 

 

2.1.2 Guidance Level II: The phase two of the MOA, inspired by a mother's role in 

counseling children to prevent misbehavior, the guidance phase enhances global search and 

exploration by significantly altering population members positions. Any member with a 

superior target function value than another is deemed to display undesirable behavior that 

should be avoided. The set of undesirable behaviors is identified using Eq. (4), and for each 

MI, a member is randomly chosen from this arrangement. A new position is generated using 

Eq. (5) to avoid undesirable behavior, and if it enhances the objective function value, it 

replaces the previous position, as specified by Eq. (6).  

BadBI = {MK, FK > FIᴧK ∈ {1,2, … … N}} Where I = 1,2, … . . N     (4) 

MI,J
p2

= MI,J + (Rand(0,1)) ∗ (MI,J − Rand(2) ∗ SBadBI,J)      (5) 
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MI = {
MI

p2
, FI

p2 ≤ FI

MI, Else
          (6) 

Where BadBI is the group of vile behaviors for the Ith inhabitant,  SBadBI is the choosen evil 

behavior for the Ith member, and SBadBI,J is its Jth attribute, MIp2 is the new position 

evaluated for the Ith member in step II. MI, Jp2 is the Jth attribute, FIp2 is its object function, 

Rand (0,1) creates a random number amidst 0 and 1, and Rand (2) yields random number 

from the set (1, 2). 

 

2.1.3 Nurture Level III: Mothers use encouragement to help children upgrade their skills. In 

MOA, the raising phase enhances localized search and exploitation by making little 

adjustments to positions. A new location is created for each component using Eq. (7), and if 

the goal function value enhances, it replaces previous location, as specified in Eq. (8). 

MI,J
p3

= MI,J + (1 − 2 ∗  Rand(0,1)),
UbJ−LbJ

T
        (7) 

MI = {
MI

p3
, FI

p3 ≤ FI

MI, Else
          (8) 

Where MIp3 is the latest position obtained for the Ith member depending on third step of the 

MOA, MI,Jp3 is its Jth dimension, FIp3 is its goal function value, the function rand (0, 1) 

produces random numbers in the interval (0, 1), and T is the count of iteration. After 

iterations, members are updated depending on steps from 1 to 3 using Eqs. (2) to (8) till the 

concluding iteration. The best solution is consistently updated and stored throughout the 

process. Upon completion, MOA provides the best candidate solution. 

 

3. Problem Definition  

Besides traditional thermal generators, the smart grid incorporates grid vehicles such as plug-

in hybrid electric vehicles and electric vehicles, along with renewable sources like solar and 

wind power. Green energy sources are essential for lowering emissions and operational costs 

alongside thermal generators. The grid vehicles function as distributed storage devices to 

assist in load balancing. An optimization method integrates all these sources, including grid 

vehicles, to set an efficient schedule aimed at reducing expenses and emissions.  

 

3.1 Modeling of Thermal Generators: The primary objective of economic load dispatch is 

to minimize the expense of generation. The generation cost of thermal generators is 

calculated using the following expression in Eq. (9). 

FGC = ∑    APTG
2NTg

Tg=1 + BPTG + C         (9) 

Where FGC represents the final generation cost, NTg denotes the total number of thermal 

generators, and A, B, C are coefficient specification upsetting the generation cost. PTG is the 

active power generated by thermal generators.  

 

3.2 Electrical Vehicle Modeling: In smart micro grid operations, electric vehicles serve 

multiple roles as energy sources, storage units, and loads. Balancing economic efficiency and 



 
Received: 16-08-2025        Revised: 05-09-2025 Accepted: 12-10-2025 
 

 
312 Volume 49 Issue 4 (October 2025) 

https://powertechjournal.com 

 

emissions reduction becomes challenging when managing the charging and discharging 

cycles of electric vehicles. This study models electric vehicles both as loads and energy  

 

resources based on apex and off-peak hours. Considering power balance criteria and the 

effect of incorporating electric automobiles into the network, the following equations will 

represent electric automobile as both sources in Eq. (10) and loads in Eq. (11).  

 

∑ PTg
NTg
Tg=1

(t) + ∑ PK
EvNEv

Ev=1 (t)(∅pre − ∅dep) = LD(t)  (10) 

 

∑ PTg
NTg
Tg=1

(t) = LD(t) + ∑ EvPK
EvNEv

Ev=1 (t)(∅pre − ∅dep)  (11) 

 

∑ NEv(t)Tt
K=1 = NEvmax    (12)  

 

Where NEv(t) represents the count of electric transport coupled to the grid at time t, PK
Ev(t) is 

the power of the Kth vehicle, φpre / φdep denotes the charge/discharge state of the electric 

vehicles battery, η the efficiency of the system, and NEvmax, is the maximum number of 

electric transports utilized during the entire time.  

 

3.3 Solar and Wind Energy System: In economic dispatch, the cost functions for solar and 

wind energy is typically defined differently from those of conventional thermal generators. 

Solar Energy Cost Function: The price of solar energy generation is often considered minimal 

because it primarily involves capital costs and very low operational costs. The cost function 

can be exhibited as a fixed cost per unit of energy generated. 

 

CSolar = CFixed × PSolar  (13) 

 

Where CSolar is the price of solar energy, CFixed  is the fixed cost per unit of solar energy, 

and PSolar is the power generated by solar panels. 

Wind Energy Cost Function: Similar to solar, the price of wind energy is mainly composed of 

capital costs and low operational costs. The cost function can also be explicit as a fixed cost 

per unit of energy generated:  

 

CWind = CFixed × PWind  (14) 

 

CWind depicts price of wind power, CFixed represents fixed cost per unit of wind power, and 

PWind is the power generated by wind turbines. In economic dispatch, green sources like sun 

and wind are often treated with zero or minimal marginal costs due to their negligible 

variable operating expenses. This makes them highly preferable for integration into the grid 

to reduce overall generation costs and emissions.  
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4. Result Analysis  

In this study, 50000 electric automobiles are integrated into a 6-unit thermal generator system 

as detailed in [14]. The generator constants and dynamic load dataset are sourced with [14], 

provided in Table I. Each 50000 electric automobiles charges and discharges once per day, 

within a 24-hour period. The electric vehicle specification is referred from [14]. Three  

different cases have been analyzed to review the impact of electric vehicles and renewable 

energy on the system and to evaluate the versatility of the algorithm. These cases incorporate 

various combinations to provide a comprehensive analysis. 

 

Table 1: Techno Economical Specification of Thermal Generators 

Parameters/TG TG1 TG2 TG3 TG4 TG5 TG6 

A ($) 240.0 200 220 200 220 190 

B($/MW) 7.00 10.00 8.50 11.00 10.50 12.00 

C($/MW2) 0.007 0.0095 0.009 0.009 0.008 0.0075 

Power Min. 100.0 50.0 80.0 50.0 50.0 50.0 

Power Max. 500.0 200.0 300.0 150.0 200.0 120.0 

 

 

 
Fig. 1 Solar and Wind power generation throughout a day 

 

4.1 Case type I: In this scenario, thermal generators and renewable energy sources 

collaborate to match the required load demand. The MOA is applied to a 6-unit thermal 

system, and its performance is equated to that of the Chimp Optimization Algorithm. The 

evaluation shows that the fuel consumption cost using MOA is $296,489.63 per day. Figure 2 

illustrates the distribution of power generation among the six generators, highlighting the 

effectiveness of MOA in balancing the power output across the system. 
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Fig. 2 Economic Dispatch of generators and renewable sources 

 

4.2 Case type II: In the second case, the system consists of thermal generators and electric 

vehicles, with the electric vehicles acting solely as loads. No renewable energy sources are 

included in this scenario. Here, electric vehicles contribute to the overall requirement of the 

network. The fuel combustion cost for this setup is $332,551.50 per day. Figure 3 provides a 

detailed view of how power is distributed among the generators and the electric vehicles, 

demonstrating the strike of incorporating electric automobiles as loads on the microgrid 

performance and cost. 

 

 
Fig. 3 Economic Dispatch of Generators and Renewable Sources 

 

4.3 Case type III: In the third case, thermal generators, renewable energy sources, and 

electric automobiles collectively meet the total demand. Here, electric vehicles function as 

both loads and sources. As demonstrated in Figure 4, electric vehicles act as sources during 

peak periods and as loads during off-peak periods. The combustion cost in this scenario is 

$30,4324.34 per day. Although plugged-in electric automobiles are seen as a viable answer to 

emissions, the study demonstrates that total cost of operation increases with plugged-in 
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electric automobiles in the system due to their energy consumption, which leads to higher 

fossil fuel use. However, the inclusion of V2G technology provides only marginal benefits 

compared to systems without plugged-in electric automobiles. The overall cost also rises with 

increased power generation. 

 

 
Fig. 4 Economic Dispatch of generators, electric vehicle and renewable sources 

 

All the above three cases evaluated through MOA, are analyzed with the outcomes of Chimp 

optimization algorithm and are depicted in Table 2. It can be observed that the results 

obtained from MOA have outperformed in comparison to chimp optimization algorithm. 

 
Table 2. Comparative Cost Analysis of Algorithms 

Technique Used Thermal Gen.+ 

Electric Veh. 

Thermal Gen. + Ren. 

Sources 

Thermal Gen.+ Electric 

Veh. + Ren. Sources 

Chimp OA 397294.10 316498.35 326625.6 

Mothers OA 

(Proposed) 

332551.5 296489.63 304324.34 

 

5. Conclusion 

In this investigation, the dynamic load dispatch issue has been effectively addressed using the 

MOA. The proposed algorithm was tested on 6-unit generator systems integrated with 

electric vehicles, renewable sources, and a combination of both. The results demonstrated 

that the MOA significantly reduced generation costs compared to scenarios without EVs and 

renewable sources. Furthermore, the MOA outperformed the Chimp Optimization Algorithm 

in terms of cost efficiency, achieving cost reductions of 19.46%, 7.328%, and 6.74%. The 

findings indicated that the MOA successfully achieved efficient load distribution at a cost-

effective rate. 

The primary limitations of these studies stem from the assumptions that grid vehicles will 

always discharge when required by the grid and that the lifespan of a grid able vehicle battery 

follows a simple linear relationship with its charging/discharging cycles. Although these 

assumptions might be plausible in an ideal scenario, they are impractical for several reasons 

as grid able vehicle performance depends on battery quality, with longevity determined by its 
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left-over capability after recurrent use as both a contributor and user. The battery 

maintenance cost is very high and is affected by the rate at which its capacity degrades.  

 

The proposed MOA approach facilitates various research opportunities for future 

investigations. A particularly promising area of research comes to the expansion of binary 

and multi-faceted versions of the proposed method. Additionally, this powerful algorithm can 

be applied to solve multi-dimensional dynamic dispatch problems in electrical grids, 

highlighting its versatility and effectiveness. 
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