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Abstract:

Free Space Optical (FSO) communication systems are highly susceptible to atmospheric
turbulence, which significantly impacts channel state estimation and system performance.
Traditional channel estimation methods, such as Least Squares (LS), Linear Minimum Mean
Square Error (LMMSE), and Extended Kalman Filter (EKF), often fail to handle the non-linear
characteristics of channels under varying turbulence conditions. This paper introduces a novel
deep learning-based channel estimation method combining Convolutional Neural Networks
(CNN) and Bidirectional Long Short-Term Memory Networks (BiLSTM), trained to predict
Channel State Information (CSI) for Gamma-Gamma distributed FSO channels. Simulations
are conducted under weak, moderate, and strong turbulence, demonstrating that the proposed
method significantly outperforms classical approaches in terms of normalized mean square
error (NMSE) and bit error rate (BER). The results show that the proposed method achieves
robust performance, especially under strong turbulence, with lower computational complexity
compared to iterative methods like EKF.

Keywords: Channel Estimation, BILSTM, Free Space Optical, Channel State Information.
1- Introduction

Channel estimation in free-space optical (FSO) communication systems is a critical aspect
due to challenges such as atmospheric turbulence and pointing errors. Various studies have
employed both classical methods and advanced machine learning approaches to enhance the
system's performance. In [1], the authors analyzed a MIMO system under gamma-gamma
turbulence, considering pointing errors, and demonstrated the suitability of the gamma-gamma
distribution for modeling atmospheric turbulence. In [2], the performance of all-optical
amplify-and-forward relaying over log-normal FSO channels was investigated, highlighting

the robustness of the log-normal model under moderate turbulence conditions. In [3], the
performance of a MIMO-FSO system under log-normal distribution was studied, emphasizing
its efficiency under specific turbulence scenarios. Deep learning has emerged as a powerful
tool for channel estimation in FSO systems. In [4], an introduction to the application of deep
learning in physical layer communications was presented, providing the basis for its applicati
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in channel estimation. In [5], the power of deep learning for channel estimation and signal
detection in OFDM systems was demonstrated, illustrating the potential for adaptation in FSO
systems. In [6], the effectiveness of deep learning models for physical layer communications
was further validated, showing improved performance metrics. Similarly, [7] proposed model-
driven deep learning methods, combining theoretical knowledge with data-driven insights,
which are highly applicable to FSO scenarios. Advanced neural network architectures, such as
those explored in [8], applied deep learning to wireless energy transfer systems, showing the
versatility of these models across communication domains. In [9], one-bit OFDM receivers
employing deep learning were analyzed, highlighting their utility in constrained environments.
Studies like [10] and [11] demonstrated deep learning's capabilities for channel estimation in
massive MIMO systems, offering insights into potential optimizations for FSO setups. In [12],
the relationship between pilot reduction and performance improvement in massive MIMO
systems with 1-bit ADCs was established, providing a framework that can be adapted for FSO
applications. In [13], the application of deep learning for beamspace mmWave massive MIMO
systems was investigated, providing a foundation for potential extensions to FSO
communication. In [14], the concept of FSO channel model effects was introduced, which
could be adapted for channel estimation scenarios. In [15], a deep learning-based channel
estimation technique for massive MIMO systems was proposed, demonstrating its
effectiveness in handling complex multiuser environments. Similarly, [16] extended these
ideas by introducing joint pilot design and channel estimation using deep learning, which could
significantly enhance FSO system performance under resource constraints. In [17], both online
and offline deep learning strategies were explored for hybrid beamforming in multi-carrier
mmWave massive MIMO systems, which may offer insights into optimizing FSO channel
estimation. In [18], sparse channel estimation for millimeter-wave massive MIMO systems was
investigated, showing how deep learning could simplify complex channel environments. In
[19], end-to-end wireless communication systems employing conditional GANs for unknown
channels were presented, providing a framework applicable to FSO systems. The study in [20]
reinforced the potential of deep learning for channel estimation and signal detection, which
could be leveraged for OFDM-based FSO systems. In [21], the WINNER II channel models
were detailed, serving as a reference for designing channel estimation techniques in FSO
systems under realistic conditions. In [22], the MMSE channel estimator was optimized using
machine learning, showcasing how data-driven approaches can outperform classical methods.
In [23], an RNN-based pilot-aided channel estimation scheme for FDD-LTE systems was
presented, which could be adapted for dynamic FSO scenarios. The combination of deep
learning and expert knowledge in OFDM receivers was explored in [24], offering insights into

how hybrid models could benefit FSO communication. In [25], deep learning techniques were
applied to channel estimation, demonstrating their ability to adapt to various communication
environments. Similarly, [26] utilized orthogonal approximate message passing with dee
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learning for CP-free OFDM, providing a robust framework applicable to FSO systems. In [27],
ChanEstNet was introduced for high-speed scenarios, showcasing the adaptability of neural
networks to rapidly varying channels. Studies like [28] and [29] focused on adaptive pilot
patterns for OFDM systems, providing practical solutions to reduce pilot overhead in FSO
channels. In [30], an enhanced channel estimation technique with adaptive pilot spacing was
proposed for OFDM systems, offering valuable insights for optimizing FSO communication
under nonstationary conditions. The study in [31] investigated adaptive pilot patterns in CA-
OFDM systems, emphasizing their importance in dynamic wireless channels. Similarly, [32]
and [33] explored pilot-aided channel estimation methods for ICI reduction and Kalman-filter-
based estimators, respectively, which could be tailored for FSO scenarios. In [34], a pilot-based
LMMSE channel estimation method was developed, demonstrating its efficiency for systems
with power-delay profile approximations. In [35], a deep learning-based channel estimation
technique incorporating SNR feedback was proposed, enhancing its applicability to
environments with variable signal quality. The concept of hypernetworks introduced in [36]
could be applied to create dynamic and flexible models for FSO channel estimation. The
Transformer architecture detailed in [37] offered new opportunities for capturing long-range
dependencies in channel state information. In [38], Gaussian-mixture Bayesian learning was
applied to massive MIMO channel estimation, providing a probabilistic framework for robust
performance. Finally, [39] introduced residual learning for image denoising, which could be
adapted to noise suppression in channel estimation. In [40], hypernetwork-based MIMO
detection demonstrated the potential of meta-learning for communication systems. The spatial
channel models in [41] and [42] provided essential guidelines for realistic simulations of FSO
channels. Optimization techniques like those in [43] and [44] highlighted efficient training
methods that could accelerate deep learning applications in FSO channel estimation. In [45], a
deep learning-based approach for channel estimation in FSO systems was introduced,
demonstrating significant improvements in handling turbulence effects. Furthermore, [46]
explored subcarrier modulation techniques in gamma-gamma turbulence, showcasing their
efficacy in FSO communication. In [47], the authors proposed a method for parameter
estimation in gamma-gamma fading channels, emphasizing the importance of precise channel
modeling. Finally, in [48], a novel approach using a deep attention residual U-Net for massive
MIMO FSO channel estimation was presented, achieving enhanced accuracy and robustness
under diverse atmospheric conditions. Traditional channel estimation methods, such as Least
Squares (LS) [49], EKF [50], LMMSE [51], have been extensively studied in the context of
wireless communication. While LS provides a computationally simple solution, its
performance is inadequate in complex fading environments. LMMSE improves estimation

accuracy by incorporating statistical information about the channel but struggles in non-linear
fading scenarios. EKF offers better accuracy through iterative updates but suffers from high
computational complexity and error propagation under severe turbulence. Recent advances i
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deep learning have shown immense potential in addressing the limitations of classical
approaches by learning non-linear mappings and temporal dependencies in wireless channels.
This paper proposes a deep learning-based channel estimation method that leverages 1D CNN
for feature extraction and BiLSTM for sequence prediction. By training the network on
Gamma-Gamma distributed channel realizations, the proposed method adapts to the dynamic
nature of FSO channels under weak, moderate, and strong turbulence. Simulation results
demonstrate that the proposed method achieves superior NMSE and BER performance
compared to LS, LMMSE, and EKF, with manageable computational complexity.

2- problem statement and channel model

Free Space Optical (FSO) communication systems are increasingly gaining attention due to
their high data rates, secure transmission, and cost-effective deployment. However, the
practical realization of these systems is hindered by atmospheric turbulence, which causes
significant signal degradation and limits system performance. Atmospheric turbulence,
modeled using the Gamma-Gamma distribution, introduces non-linear fading effects that vary
with turbulence strength, ranging from weak to strong.

2-1-The Gamma-Gamma FSO channel model

The Gamma-Gamma channel model is widely used to represent the effects of atmospheric
turbulence in FSO communication systems. Turbulence-induced fading results from variations
in the refractive index of the atmosphere caused by temperature and pressure fluctuations, which
lead to scintillation (intensity fluctuations) of the received optical signal. The Gamma-Gamma
model effectively captures the statistical behavior of these fluctuations for weak, moderate, and
strong turbulence conditions.

The Gamma-Gamma channel coefficients can be obtained by multiplying two Gamma

variables:
I =1L, (M
where I and I, follow Gamma distribution. The Gamma-Gamma distribution is then [14]:
2(aB) @Bz (a+BY_
p(D) = (?(%—F(ﬁ)l( 2 ) Ky p(2y/apl), 1>0 )

where K, (.) is the modified Bessel function of 2nd kind and order n, and I'(.) represents the
Gamma function. The parameters a and § is given by:

-1
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where o = 1.23C2k7/6L'/® is the log irradiance variance, L is the link range, k =

2
i
C? = 5.1073 m~2/3 The values of a and 8 determine the level of channel turbulences. The
Gamma-Gamma distribution can model weak, moderate and strong turbulence levels. Table 1

shows the different @ and f to determine the intensity of turbulence in FSO channel.

, and

Table 1: Parameters of Gamma-Gamma FSO channels

Turbulence intensity Parameters
a B
Weak 11.6 10.1
Moderate 4.0 1.9
Strong 4.2 1.4

The Gamma-Gamma model's complexity and non-linear characteristics make classical
estimation methods, such as LS and LMMSE, inadequate for FSO systems, particularly under
moderate and strong turbulence. Deep learning-based approaches, as proposed in this paper, are
well-suited to handle these challenges because they can model the intricate dependencies in the
channel response, providing superior estimation accuracy and robustness. Figure 1 shows the
PDFs of the Gamma-Gamma channel coefficients.

1o Gamma-Gamma PDFs

= == Weak Turbulence
===== Moderate Turbulence
-------- Strong Turbulence N

2.5 3 3.5 4 4.5 5
Irradiance, |

Fig. 1: Probability density functions of the Gamma-Gamma distribution for different turbulence
levels.
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Many references have shown the channel coefficients with H [49-51], therefore for the rest of
this paper we show the FSO channel coefficients with H.

3- Deep learning model

The proposed channel estimation is based on the combined deep learning that is for the first
time is used to estimate the FSO channel and enhance the optical OFDM [53] system
performance.

3-1-Channel Estimation Network

The Channel Estimation Network obtains the channel response in the pilot and data
subcarriers. Its output represents the channel frequency response across all subcarriers,
indicating the performance of both pilot estimation and interpolation operations in pilot and
data subcarriers. In this section, we first describe the network structure, then examine the data
process, and finally explain the network training procedure.

3-2-Channel Estimation Network Structure

The channel estimation network structure, inspired by reference [27] and [52], is designed
to include a one-dimensional convolutional network (1D-CNN), a bidirectional LSTM network
(BiLSTM), and a fully connected neural network (FCNN). The reasons for using this
architecture, depicted in Fig. (2), are further explained below.

The one-dimensional convolutional network is employed to extract frequency features of
the pilot sequence. It is composed of multiple parallel filters, which are connected to the input
with specified weights. The convolution is then performed along the frequency axis.

The step length along the frequency axis of a subcarrier, the number of network filters, and
the activation function tanh are considered in this paper.

The primary objective of employing the BiLSTM network, which is a combination of two
LSTM networks, is to train the sequence behavior of the frequency response of the channel.
This is done in order to predict the current-time output based on the current-time data as well
as the data from previous and future time steps. Essentially, the network output is also in the
form of a sequence. The BILSTM network consists of two layers, with each layer consisting of
one hundred hidden unit with tanh activation function
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Fig. 2: The structure of the channel estimation network.

The purpose of including two layers of the FCNN network with a linear activation function
in the output of the BILSTM network at each time step is to linearly reduce the output vector
in a cascading manner.

3-3- The process of channel estimation data network.

The use of true symbols as the desired output is intentional and aligns with the objective of
channel estimation in this work. Our goal is to train the model to learn the channel effects by
analyzing how the transmitted symbols are altered during propagation. The channel estimation
process indirectly relies on understanding the distortions caused by the channel on these
symbols. By providing the true symbols as the desired output, the model learns to reverse these
distortions and, in doing so, captures the underlying channel characteristics. This approach is
conceptually analogous to joint channel estimation and symbol detection. Instead of directly
outputting the channel parameters, the network focuses on recovering the transmitted symbols,
which inherently requires estimating the channel effects. The changes in the received symbols,
relative to the true transmitted symbols, implicitly encode the channel state information. By
learning this mapping, the network effectively models the channel behavior without explicitly
outputting the channel parameters. Furthermore, the rationale for this methodology is
supported by the practical benefits it offers. Directly predicting channel parameters often

requires precise assumptions about the channel model and its statistical properties, which may
not hold in dynamic or complex environments like FSO systems with turbulence. In contrast,
using true symbols as the desired output allows the network to flexibly adapt to varying chann
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conditions by focusing on the observable changes in the symbols, making it robust and effective
in diverse scenarios.

The process of channel estimation data network is depicted in Fig. (3). In the following, we
will explain this process in three stages.

1) Input Data: The input of the channel estimation network is a CSI matrix for an OFDM
symbol. This symbol can have one of the two pilot layouts. The CSI matrix is a complex matrix
H € RV*2 where N rows correspond to the number of subcarriers and it has two columns, the
real and imaginary values have been concatenated. The CSI values in the pilot subcarriers are
equal to the LS response, and in the data subcarriers, they are considered as zero. Since the
input to the BILSTM network should be in the form of a series, the input matrix is described
as follows:

H= [hy Ry oo By By | (5)

Where h,, € R1*? and CSI determines the nth subcarrier.
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Fig. 3. Channel Estimation Data Flow

2) CNN Network: The output of the CNN network is also a matrix Z € R¥*2, as mentioned,
the number of network’s filters is set to two.

3) BiLSTM Network and FCNN Network: The dimension of the output matrix of the first
and second layers of the BILSTM network at each time step is 1 X 200. Therefore, the
dimension of the input matrix of the first layer of the FCNN network at each time step becomes
Y,, € R1*200 The dimension of the output matrix of the first layer of the FCNN network
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each time step is 1 X 32. The dimension of the final output matrix at each time step is equal to
the output of the second layer of the FCNN network, which is H,, € R**2. Finally, the actual
and conceptual response of the channel for all pilot subcarriers and data is expressed as follows:

4- Results and Analysis

For training the network shown in Fig. (2), an end-to-end approach has been employed. The
ADAM optimizer has been used to improve the network parameters, and the normalized mean
square error (NMSE) cost function has been considered:

1 ~

= Y6 (H;, — H)?

NMSE — G i 1( i 1) 1 . - (7)
G i=1(Hi)

In the above equation, G represents the total number of training data and H; denotes the
correct channel response. A dataset was created for training a network and simulating FSO
channels. The input data for training the network consists of 2,400,000 OFDM symbols
received from the channel and after demodulation. These symbols are generated with two types
of pilot arrangements, with an equal number of symbols for both types of arrangements.
Specifically, 1,200,000 samples correspond to pilot arrangements with a frequency spacing of
8 subcarriers, and 1,200,000 samples correspond to pilot arrangements with a frequency
spacing of 16 subcarriers. The output data for training the network is the correct response of
the channel, with 1,600,000 samples for validation and 2,000,000 samples for testing. The
network is trained for a total of 52 epochs, where in the initial 50 epochs, the batch size is 32
and the learning rate is 0.001. Then, with a change in the learning rate to 0.001, the trained
network is further trained for 2 additional epochs.

4-1 NMSE Comparison

In this part we compare the NMSE values of different channel estimation methods based on
the following conditions:

e Weak Turbulence:

o The proposed method achieves the lowest NMSE across all SNR values,
significantly outperforming LS and EKF.

e Moderate Turbulence:

o NMSE improvements are consistent, with notable gains over LMMSE under
challenging conditions.
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e Strong Turbulence:

o The proposed method maintains robust performance, with NMSE values up to
50% lower than classical methods.

o NMSE vs SNR for weak Turbulence
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Fig. 4. The NMSE of FSO channel estimation with weak turbulence.

For the weak turbulence as can be seen in Fig. 4, the NMSE is low.

NMSE vs SNR for Moderate Turbulence
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Fig. 5. The NMSE of FSO channel estimation with moderate turbulence.
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As the turbulence level becomes stronger, the channel coefficient estimation becomes harder
and therefore the NMSE rises. As can be seen from Fig. 5 and 6 the NMSE becomes higher for

stronger turbulence.
0 NMSE vs SNR for Strong Turbulence
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Fig. 6. The NMSE of FSO channel estimation with strong turbulence.
4-2 BER Comparison

In this part we compare the NMSE values of different channel estimation methods based on
the following conditions:

e Weak Turbulence:

o BER is minimal for all methods at higher SNR values, but the proposed method
excels at low SNR.

e Moderate Turbulence:

o BER improvements align with NMSE trends, with gains observed particularly
over LS.

o Strong Turbulence:

o BER remains high for LS and EKF under strong turbulence, while the proposed
method significantly reduces errors.
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0 BER vs SNR for weak Turbulence
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Fig. 7. BER performance of the proposed OFDM system in weak turbulence condition.

0 BER vs SNR for moderate Turbulence
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Fig. 8. BER performance of the proposed OFDM system in moderate turbulence condition.
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0 BER vs SNR for strong Turbulence
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Fig. 9. BER performance of the proposed OFDM system in strong turbulence condition.
4.3 Complexity Analysis

The computational complexity of a channel estimation method is a critical factor, especially in
real-world scenarios where resources like processing power and time are limited. Among the
classical methods, the LS approach is the simplest and least computationally intensive because it
relies on linear interpolation and does not require iterative processing or the inversion of large
matrices. However, its simplicity comes at the cost of accuracy, particularly under complex
channel conditions like those encountered in FSO systems with strong turbulence. The LMMSE
method improves upon LS by incorporating statistical information about the channel. This
requires additional computations, including the inversion of covariance matrices, which increases
the computational load, especially as the channel dimensions grow. While LMMSE offers better
performance than LS, its assumption of linearity limits its effectiveness in highly dynamic and
non-linear environments. The EKF, on the other hand, introduces an iterative approach to channel
estimation, where the channel state is recursively updated based on current observations and prior
estimates. This iterative nature, combined with matrix inversion operations in each step, results
in significantly higher computational complexity. Although EKF is capable of handling non-
linear channel variations to some extent, its computational burden makes it less suitable for high-
speed or resource-constrained applications. In contrast, the proposed deep learning-based method
leverages offline training to learn the complex non-linear mappings and temporal dependencies
of FSO channels. During deployment, the trained model performs channel estimation using a
combination of convolutional and recurrent neural networks, which are computationally efficie
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compared to iterative methods like EKF. The primary computational load occurs during the
training phase, which is performed offline and does not impact real-time performance. This
makes the proposed method well-suited for real-time applications while maintaining superior
estimation accuracy. Moreover, its architecture is scalable, allowing it to handle increased
channel complexity without a proportional increase in computational demand. The Fig. 10
compares the computational complexity of various channel estimation methods LS, LMMSE,
EKF, and the proposed deep learning-based approach by plotting their execution time against
channel dimensions. The LS method exhibits the lowest complexity with a linear increase in
execution time, making it computationally efficient but less accurate under complex channel
conditions. The LMMSE method provides better accuracy by leveraging statistical channel
information but has a quadratic growth in complexity due to matrix inversions, limiting its real-
time applicability. The EKF method, while capable of handling some non-linearities,
demonstrates the highest complexity because of its iterative nature and matrix operations, making
it unsuitable for high-speed systems. In contrast, the proposed deep learning-based method
maintains low execution time with minimal growth as channel dimensions increase, owing to its
reliance on efficient inference after offline training. This scalability and efficiency make the
proposed method ideal for real-time applications while delivering superior channel estimation
accuracy.

Computational Complexity Analysis of Channel Estimation Methods
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Fig. 10. Comparison of the computational complexity of the channel estimation methods.
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5- Conclusion

This paper presents a deep learning-based channel estimation method for FSO
communication systems, tailored for Gamma-Gamma distributed turbulence. The proposed
method leverages CNN and BiLSTM networks to model the non-linear and temporal
characteristics of FSO channels effectively. Simulation results demonstrated that the proposed
method significantly outperforms traditional methods (LS, LMMSE, EKF) in terms of NMSE
and BER under all turbulence conditions. Particularly, the method excels in strong turbulence
scenarios where classical methods fail to provide robust estimation. Future work will focus on
real-time implementation of the proposed method, investigating its adaptability to more
complex channel conditions, such as pointing errors and beam misalignments, and exploring
hardware optimization for deployment in practical FSO systems.
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